Effect of the Hydrophobicity of Hybrid Gate Dielectrics on a ZnO Thin Film Transistor
نویسنده
چکیده
Amorphous silicon thin film transistors (a-Si TFTs) are widely used for consumer electronics and have been demonstrated to be useful for use in solar cells and flexible displays. Organic thin film transistors are of interest for applications in low-cost electronic devices such as radio-frequency identification tags, flexible displays, memory and sensors. However, the applications of these devices are limited by their low mobility and light/ moisture sensitivity due to intrinsic material properties Recently, zinc oxide (ZnO) has drawn much attention as one of the promising II-VI compound semiconductors that exhibits a wide band gap of 3.35 eV and a wurtzite structure; it can be used to form transparent electrodes, gas sensors, photovoltaic devices, light emitters, and bulk acoustic wave devices [1]. ZnO TFTs prepared by different techniques have been reported previously, mostly using inorganic dielectrics such as aluminum oxide [2-6]. The use of organic dielectrics for TFTs is likely to be an ideal solution for all-organic electronics. However, there have been few reports on oxide semiconductors used with a polymeric gate dielectric produced by atomic layer deposition (ALD) technology before the recent report [7]. In the case of organic gate dielectrics, the threshold voltage shift and hysteresis behaviors are unstable due to their structural imperfections and moisture absorption. In order to find a suitable dielectric system, polymer and high-k oxide double layer dielectrics could be used for TFT applications. In this work, a bottom-gate and bottom-contact ZnO TFT prepared from ALD with a polymeric dielectric and silicon oxide hybrid materials was fabricated in order to investigate the effect of the hydrophobocity of the gate insulator on the TFT properties. The hysteresis behavior of this TFT was examined.
منابع مشابه
Study of the Characteristics of Organic Thin Film Transistors with Plasma-Polymer Gate Dielectrics
The effects of gate dielectrics material in organic thin film transistors (OTFTs) were investigated. The gate dielectrics were deposited by plasma enhanced chemical vapor deposition (PECVD) with cyclohexane and tetraethylorthosilane (TEOS) respectively used as organic and inorganic precursors. The gate dielectrics (gate insulators) were deposited as either organic plasma-polymer or organic–inor...
متن کاملDual-Gate ZnO Thin-Film Transistors with SiNx as Dielectric Layer
We report on the fabrication of coplanar dual-gate ZnO thin-film transistors with 200-nm thickness SiNx for both top and bottom dielectrics. The ZnO film was deposited by RF magnetron sputtering on SiO2/Si substrates at 100◦C. And the thickness of ZnO film is compared with 100-nm and 40-nm. This TFT has a channel width of 100-μm and channel length of 5-μm. The fabricated coplanar dual-gate ZnO ...
متن کاملOrganic Thin Film Transistors with Polyvinylpyrrolidone / Nickel Oxide Sol-Gel Derived Nanocomposite Insulator
Polyvinylpyrrolidone / Nickel oxide (PVP/NiO) dielectrics were fabricated with sol-gel method using 0.2 g of PVP at different working temperatures of 80, 150 and 200 ºC. Structural properties and surface morphology of the hybrid films were investigated by X- Ray diffraction (XRD) and Scanning Electron Microscope (SEM) respectively. Energy dispersive X-ray spec...
متن کاملProcess Optimization of Deposition Conditions for Low Temperature Thin Film Insulators used in Thin Film Transistors Displays
Deposition process for thin insulator used in polysilicon gate dielectric of thin film transistors are optimized. Silane and N2O plasma are used to form SiO2 layers at temperatures below 150 ºC. The deposition conditions as well as system operating parameters such as pressure, temperature, gas flow ratios, total flow rate and plasma power are also studied and their effects are discussed. The p...
متن کاملThe Enhanced Formaldehyde-Sensing Properties of P3HT-ZnO Hybrid Thin Film OTFT Sensor and Further Insight into Its Stability
A thin-film transistor (TFT) having an organic-inorganic hybrid thin film combines the advantage of TFT sensors and the enhanced sensing performance of hybrid materials. In this work, poly(3-hexylthiophene) (P3HT)-zinc oxide (ZnO) nanoparticles' hybrid thin film was fabricated by a spraying process as the active layer of TFT for the employment of a room temperature operated formaldehyde (HCHO) ...
متن کامل