Intracellular singlet oxygen photosensitizers: on the road to solving the problems of sensitizer degradation, bleaching and relocalization.

نویسندگان

  • Elsa F F da Silva
  • Frederico M Pimenta
  • Brian W Pedersen
  • Frances H Blaikie
  • Gabriela N Bosio
  • Thomas Breitenbach
  • Michael Westberg
  • Mikkel Bregnhøj
  • Michael Etzerodt
  • Luis G Arnaut
  • Peter R Ogilby
چکیده

Selected singlet oxygen photosensitizers have been examined from the perspective of obtaining a molecule that is sufficiently stable under conditions currently employed to study singlet oxygen behavior in single mammalian cells. Reasonable predictions about intracellular sensitizer stability can be made based on solution phase experiments that approximate the intracellular environment (e.g., solutions containing proteins). Nevertheless, attempts to construct a stable sensitizer based solely on the expected reactivity of a given functional group with singlet oxygen are generally not sufficient for experiments in cells; it is difficult to construct a suitable chromophore that is impervious to all of the secondary and/or competing degradative processes that are present in the intracellular environment. On the other hand, prospects are reasonably positive when one considers the use of a sensitizer encapsulated in a specific protein; the local environment of the chromophore is controlled, degradation as a consequence of bimolecular reactions can be mitigated, and genetic engineering can be used to localize the encapsulated sensitizer in a given cellular domain. Also, the option of directly exciting oxygen in sensitizer-free experiments provides a useful complementary tool. These latter systems bode well with respect to obtaining more accurate control of the "dose" of singlet oxygen used to perturb a cell; a parameter that currently limits mechanistic studies of singlet-oxygen-mediated cell signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photosensitization of coronene–purine hybrids for photodynamic therapy

Photosensitization properties of coronene-purine (Cor-P) hybrids for photodynamic therapy (PDT) have been investigated in this work. Eight hybrid Cor-P models have been designed by the additional of adenine (A) and guanine (G) nucleobase to Cor species. The evaluated absorption and emission energies indicated that the singular models are not good at all for PDT process whereas their hybrid mode...

متن کامل

Plateau distributions of DNA fragment lengths produced by extended light exposure of extranuclear photosensitizers in human cells.

We have exploited properties of photosensitizers to study an aspect of the packing of chromatin in the cell nucleus. The fluorescent photosensitizers mesotetra(3-hydroxyphenyl) porphyrin and Photofrin II were both localized in the nuclear membrane and other membrane structures, but could not be found inside the nuclei. Light exposure of cells at 1 degrees C in the presence of the sensitizers in...

متن کامل

Singlet oxygen generation of porphyrins, chlorins, and phthalocyanines.

The production of singlet oxygen was measured indirectly for three classes of photosensitizers: porphyrins (Photofrin II, TPPS4), chlorins (MACE, DACE), and a phthalocyanine (CASPc). Buffered solutions of sensitizers and singlet oxygen acceptors were irradiated with a CW dye laser and the oxygen depletion was monitored electrochemically with a Clark-type microelectrode. A comparison of oxygen-d...

متن کامل

Photodynamic therapy-mediated oxidative stress can induce expression of heat shock proteins.

Photodynamic therapy (PDT) is an experimental cancer therapy inducing tumor tissue damage via photosensitizer-mediated oxidative cytotoxicity. A previous report indicates that oxidative stress induced by hydrogen peroxide or menadione activates the heat shock transcription factor in mouse cells but does not result in either increased transcription or translation of heat shock proteins (HSPs). O...

متن کامل

Towards improved halogenated BODIPY photosensitizers: clues on structural designs and heavy atom substitution patterns.

The singlet oxygen (1O2) production quantum yield (ΦΔ) of 14 halogenated BODIPY dyes has been determined (0.01 < ΦΔ < 0.99). 1O2 production and photostability have been evaluated considering the BODIPY structure, the substitution pattern, and the number and type of heavy atoms and quenching rate constants of 1O2 by the sensitizer. In view of the experimental results and principal component anal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Integrative biology : quantitative biosciences from nano to macro

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 2016