Nondegeneracy of Nonradial Sign-changing Solutions to the Nonlinear Schrödinger Equation

نویسندگان

  • WEIWEI AO
  • JUNCHENG WEI
چکیده

We prove that the non-radial sign-changing solutions to the nonlinear Schrödinger equation ∆u− u + |u|p−1u = 0 in R , u ∈ H(R ) constructed by Musso, Pacard, and Wei [19] are non-degenerate. This provides the first example of a non-degenerate sign-changing solution to the above nonlinear Schrödinger equation with finite energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nondegeneracy of Nonradial Sign-changing Solutions to the Nonlinear Schrödinger Equations

We prove the non-degeneracy of the non-radial sign-changing solutions to the nonlinear Schrödinger equation ∆u− u+ |u|p−1u = 0 in R constructed by Musso, Pacard and Wei [19].

متن کامل

Nondegeneracy of Nonradial Nodal Solutions to Yamabe Problem

We prove the existence of a sequence of nondegenerate, in the sense of Duyckaerts-Kenig-Merle [9], nodal nonradial solutions to the critical Yamabe problem −∆Q = |Q| 2 n−2Q, Q ∈ D1,2(Rn). This is the first example in the literature of nondegeneracy for nodal nonradial solutions of nonlinear elliptic equations and it is also the only nontrivial example for which the result of Duyckaerts-Kenig-Me...

متن کامل

Infinitely many solutions for a bi-nonlocal‎ ‎equation with sign-changing weight functions

In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.

متن کامل

Uniqueness and nondegeneracy of sign-changing radial solutions to an almost critical elliptic problem

where 1 < p < N+2 N−2 , N ≥ 3. It is well-known that this equation has a unique positive radial solution. The existence of sign-changing radial solutions with exactly k nodes is also known. However the uniqueness of such solutions is open. In this paper, we show that such sign-changing radial solution is unique when p is close to N+2 N−2 . Moreover, those solutions are non-degenerate, i.e., the...

متن کامل

Global Well-posedness and Scattering for the Focusing Nonlinear Schrödinger Equation in the Nonradial Case

The energy-critical, focusing nonlinear Schrödinger equation in the nonradial case reads as follows: i∂tu = −∆u− |u| 4 N−2 u, u(x, 0) = u0 ∈ H(R ), N ≥ 3. Under a suitable assumption on the maximal strong solution, using a compactness argument and a virial identity, we establish the global well-posedness and scattering in the nonradial case, which gives a positive answer to one open problem pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018