Oral treatment with desipramine improves breathing and life span in Rett syndrome mouse model.

نویسندگان

  • Sébastien Zanella
  • Saida Mebarek
  • Anne-Marie Lajard
  • Nathalie Picard
  • Mathias Dutschmann
  • Gérard Hilaire
چکیده

Rett syndrome is a neurodevelopmental disease due to Mecp2 gene mutations that is associated to complex neurological symptoms, with bioaminergic deficits and life-threatening apneas related to sudden and unexpected death. In male mice, Mecp2-deficiency similarly induces medullary bioaminergic deficits, severe apneas and short life span. Here, we show that long-term oral treatment of Mecp2-deficient male mice with desipramine, an old drug of clinical use known to block norepinephrine uptake and to strengthen its synaptic effects, significantly alleviates their breathing symptoms and prolongs their life span. Although these mouse results identify desipramine as the first oral pharmacological treatment potentially able to alleviate breathing symptoms of Rett syndrome, we recommend further studies of desipramine effects in Mecp2-deficient mice before attempting any clinical trials in Rett patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Treatment with desipramine improves breathing and survival in a mouse model for Rett syndrome.

Rett syndrome (RS) is a severe X-linked neurological disorder in which most patients have mutations in the methyl-CpG binding protein2 (MECP2) gene. No effective treatment exists. We previously showed that the Mecp2-deficient mice, a mouse model of RS, have highly variable respiratory rhythm and frequent apneas due to reduced norepinephrine (NE) content, and a drastic decrease of tyrosine hydro...

متن کامل

Characterization of the MeCP2R168X Knockin Mouse Model for Rett Syndrome

Rett syndrome, one of the most common causes of mental retardation in females, is caused by mutations in the X chromosomal gene MECP2. Mice deficient for MeCP2 recapitulate some of the symptoms seen in patients with Rett syndrome. It has been shown that reactivation of silent MECP2 alleles can reverse some of the symptoms in these mice. We have generated a knockin mouse model for translational ...

متن کامل

Effect of desipramine on patients with breathing disorders in RETT syndrome

Objective Rett Syndrome (RTT) is a severe neurodevelopmental condition with breathing disorders, affecting around one in 10,000 female births. Desipramine, a noradrenaline reuptake inhibitor, reduced the number of apneas in Mecp2-deficient mice, a model of RTT. We planned a phase 2 trial to test its efficacy and its safety on breathing patterns in 36 girls with RTT. Methods The trial was a 6-...

متن کامل

The disruption of central CO2 chemosensitivity in a mouse model of Rett syndrome.

People with Rett syndrome (RTT) have breathing instability in addition to other neuropathological manifestations. The breathing disturbances contribute to the high incidence of unexplained death and abnormal brain development. However, the cellular mechanisms underlying the breathing abnormalities remain unclear. To test the hypothesis that the central CO(2) chemoreception in these people is di...

متن کامل

Systemic Radical Scavenger Treatment of a Mouse Model of Rett Syndrome: Merits and Limitations of the Vitamin E Derivative Trolox

Rett syndrome (RTT) is a severe neurodevelopmental disorder typically arising from spontaneous mutations in the X-chromosomal methyl-CpG binding protein 2 (MECP2) gene. The almost exclusively female Rett patients show an apparently normal development during their first 6-18 months of life. Subsequently, cognitive- and motor-impairment, hand stereotypies, loss of learned skills, epilepsy and irr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Respiratory physiology & neurobiology

دوره 160 1  شماره 

صفحات  -

تاریخ انتشار 2008