Arginase expression modulates nitric oxide production in Leishmania (Leishmania) amazonensis
نویسندگان
چکیده
BACKGROUND Arginase is an enzyme that converts L-arginine to urea and L-ornithine, an essential substrate for the polyamine pathway supporting Leishmania (Leishmania) amazonensis replication and its survival in the mammalian host. L-arginine is also the substrate of macrophage nitric oxide synthase 2 (NOS2) to produce nitric oxide (NO) that kills the parasite. This competition can define the fate of Leishmania infection. METHODOLOGY/PRINCIPAL FINDINGS The transcriptomic profiling identified a family of oxidoreductases in L. (L.) amazonensis wild-type (La-WT) and L. (L.) amazonensis arginase knockout (La-arg-) promastigotes and axenic amastigotes. We highlighted the identification of an oxidoreductase that could act as nitric oxide synthase-like (NOS-like), due to the following evidences: conserved domain composition, the participation of NO production during the time course of promastigotes growth and during the axenic amastigotes differentiation, regulation dependence on arginase activity, as well as reduction of NO amount through the NOS activity inhibition. NO quantification was measured by DAF-FM labeling analysis in a flow cytometry. CONCLUSIONS/SIGNIFICANCE We described an arginase-dependent NOS-like activity in L. (L.) amazonensis and its role in the parasite growth. The increased detection of NO production in the mid-stationary and late-stationary growth phases of La-WT promastigotes could suggest that this production is an important factor to metacyclogenesis triggering. On the other hand, La-arg- showed an earlier increase in NO production compared to La-WT, suggesting that NO production can be arginase-dependent. Interestingly, La-WT and La-arg- axenic amastigotes produced higher levels of NO than those observed in promastigotes. As a conclusion, our work suggested that NOS-like is expressed in Leishmania in the stationary growth phase promastigotes and amastigotes, and could be correlated to metacyclogenesis and amastigotes growth in a dependent way to the internal pool of L-arginine and arginase activity.
منابع مشابه
Leishmania (Leishmania) amazonensis induces macrophage miR-294 and miR-721 expression and modulates infection by targeting NOS2 and L-arginine metabolism
Leishmania (Leishmania) amazonensis is an intracellular protozoan parasite responsible for the cutaneous leishmaniasis. The parasite replicates inside mammalian macrophage to establish infection. Host-pathogen interactions result in microRNA-mediated post-transcriptional regulation of host genes involved in inflammatory immune response. We analyzed macrophage miRNA profiles during L. (L.) amazo...
متن کاملInsulin-Like Growth Factor-I Induces Arginase Activity in Leishmania amazonensis Amastigote-Infected Macrophages through a Cytokine-Independent Mechanism
Leishmania (Leishmania) amazonensis exhibits peculiarities in its interactions with hosts. Because amastigotes are the primary form associated with the progression of infection, we studied the effect of insulin-like growth factor (IGF)-I on interactions between L. (L.) amazonensis amastigotes and macrophages. Upon stimulation of infected macrophages with IGF-I, we observed decreased nitric oxid...
متن کاملKinetoplastid membrane protein-11 exacerbates infection with Leishmania amazonensis in murine macrophages.
In Leishmania amazonensis, kinetoplastid membrane protein-11 (KMP-11) expression increases during meta-cyclogenesis and is higher in amastigotes than in promastigotes, suggesting a role for this protein in the infection of the mammalian host. We show that the addition of KMP-11 exacerbates L. amazonensis infection in peritoneal macrophages from BALB/c mice by increasing interleukin (IL)-10 secr...
متن کاملArginase Activity and Its Effects on Pathogenesis of Leishmania
Leishmaniasis is a tropical parasitic disease that has become a major health challenge in many countries of the world. Not only has not been found any effective vaccine or treatment for the disease eradication, but also the advent of drug resistance is also increasing. Therefore, it is vital to take a precise attention to the physiochemical cycles of the Leishmania parasite and to identify i...
متن کاملRNA-seq transcriptional profiling of Leishmania amazonensis reveals an arginase-dependent gene expression regulation
BACKGROUND Leishmania is a protozoan parasite that alternates its life cycle between the sand-fly vector and the mammalian host. This alternation involves environmental changes and leads the parasite to dynamic modifications in morphology, metabolism, cellular signaling and regulation of gene expression to allow for a rapid adaptation to new conditions. The L-arginine pathway in L. amazonensis ...
متن کامل