Functional analysis of two cavities in flavivirus NS5 polymerase.

نویسندگان

  • Gang Zou
  • Yen-Liang Chen
  • Hongping Dong
  • Chin Chin Lim
  • Li Jian Yap
  • Yin Hoe Yau
  • Susana Geifman Shochat
  • Julien Lescar
  • Pei-Yong Shi
چکیده

Flavivirus NS5 protein encodes methyltransferase and RNA-dependent RNA polymerase (RdRp) activities. Structural analysis of flavivirus RdRp domains uncovered two conserved cavities (A and B). Both cavities are located in the thumb subdomains and represent potential targets for development of allosteric inhibitors. In this study, we used dengue virus as a model to analyze the function of the two RdRp cavities. Amino acids from both cavities were subjected to mutagenesis analysis in the context of genome-length RNA and recombinant NS5 protein; residues critical for viral replication were subjected to revertant analysis. For cavity A, we found that only one (Lys-756) of the seven selected amino acids is critical for viral replication. Alanine substitution of Lys-756 did not affect the RdRp activity, suggesting that this residue functions through a nonenzymatic mechanism. For cavity B, all four selected amino acids (Leu-328, Lys-330, Trp-859, and Ile-863) are critical for viral replication. Biochemical and revertant analyses showed that three of the four mutated residues (Leu-328, Trp-859, and Ile-863) function at the step of initiation of RNA synthesis, whereas the fourth residue (Lys-330) functions by interacting with the viral NS3 helicase domain. Collectively, our results have provided direct evidence for the hypothesis that cavity B, but not cavity A, from dengue virus NS5 polymerase could be a target for rational drug design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dengue Virus Nonstructural Protein 5 (NS5) Assembles into a Dimer with a Unique Methyltransferase and Polymerase Interface

Flavivirus nonstructural protein 5 (NS5) consists of methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, which catalyze 5'-RNA capping/methylation and RNA synthesis, respectively, during viral genome replication. Although the crystal structure of flavivirus NS5 is known, no data about the quaternary organization of the functional enzyme are available. We report the crysta...

متن کامل

Glutathionylation of dengue and Zika NS5 proteins affects guanylyltransferase and RNA dependent RNA polymerase activities

It has been estimated for dengue infection that the global population at risk is 3.5 billion people, which makes dengue an important public health problem. The causative agents of dengue are dengue viruses. For dengue virus replication, the dengue virus NS5 protein is of special importance as it has several enzyme activities important for viral replication. Previous reports of phosphorylation a...

متن کامل

Nucleotide sequence of the NS5 gene of Banzi virus: comparison with other flaviviruses.

Banzi is a mosquito borne flavivirus which belongs to the Uganda S serocomplex. No nucleotide sequence data have previously been reported from any virus of this serocomplex. We have determined the nucleotide sequence of the NS5 gene from Banzi virus and the predicted amino acid sequence was elucidated. Previously identified conserved RNA polymerase, methyltransferase and flavivirus NS5 amino ac...

متن کامل

The Interface between Methyltransferase and Polymerase of NS5 Is Essential for Flavivirus Replication

The flavivirus NS5 harbors both a methyltransferase (MTase) and an RNA-dependent RNA polymerase (RdRP). Both enzyme activities of NS5 are critical for viral replication. Recently, the full-length NS5 crystal structure of Japanese encephalitis virus reveals a conserved MTase-RdRP interface that features two conserved components: a six-residue hydrophobic network and a GTR sequence. Here we showe...

متن کامل

The structure of Zika virus NS5 reveals a conserved domain conformation

The recent outbreak of Zika virus (ZIKV) has imposed a serious threat to public health. Here we report the crystal structure of the ZIKV NS5 protein in complex with S-adenosyl-L-homocysteine, in which the tandem methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains stack into one of the two alternative conformations of flavivirus NS5 proteins. The activity of this NS5 protei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 16  شماره 

صفحات  -

تاریخ انتشار 2011