A q - QUEENS PROBLEM . II . THE SQUARE BOARD August

نویسنده

  • THOMAS ZASLAVSKY
چکیده

We apply to the n × n chessboard the counting theory from Part I for nonattacking placements of chess pieces with unbounded straight-line moves, such as the queen. Part I showed that the number of ways to place q identical nonattacking pieces is given by a quasipolynomial function of n of degree 2q, whose coefficients are (essentially) polynomials in q that depend cyclically on n. Here we study the periods of the quasipolynomial and its coefficients, which are bounded by functions, not well understood, of the piece’s move directions, and we develop exact formulas for the very highest coefficients. The coefficients of the three highest powers of n do not vary with n. On the other hand, we present simple pieces for which the fourth coefficient varies periodically. We develop detailed properties of counting quasipolynomials that will be applied in sequels to partial queens, whose moves are subsets of those of the queen, and the nightrider, whose moves are extended knight’s moves. We conclude with the first, though strange, formula for the classical n-Queens Problem and with several conjectures and open problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A q - QUEENS PROBLEM I . GENERAL THEORY MARCH 3 , 2013

We establish a general counting theory for nonattacking placements of chess pieces with unbounded straight-line moves, such as the queen, and we apply the theory to square boards. We show that the number of ways to place q nonattacking queens on a chessboard of variable size n but fixed shape is a quasipolynomial function of n. The period of the quasipolynomial is bounded by a function of the q...

متن کامل

2 0 Fe b 20 14 A q - QUEENS PROBLEM II . THE SQUARE BOARD

We apply to the n× n chessboard the counting theory from Part I for nonattacking placements of chess pieces with unbounded straight-line moves, such as the queen. Part I showed that the number of ways to place q identical nonattacking pieces is given by a quasipolynomial function of n of degree 2q, whose coefficients are (essentially) polynomials in q that depend cyclically on n. Here we study ...

متن کامل

A q - QUEENS PROBLEM I . GENERAL THEORY August

By means of the Ehrhart theory of inside-out polytopes we establish a general counting theory for nonattacking placements of chess pieces with unbounded straight-line moves, such as the queen, on a polygonal convex board. The number of ways to place q identical nonattacking pieces on a board of variable size n but fixed shape is (up to a normalization) given by a quasipolynomial function of n, ...

متن کامل

A q-QUEENS PROBLEM III. PARTIAL QUEENS

Parts I and II showed that the number of ways to place q nonattacking queens or similar chess pieces on an n× n square chessboard is a quasipolynomial function of n in which the coefficients are essentially polynomials in q. We explore this function for partial queens, which are pieces like the rook and bishop whose moves are a subset of those of the queen. We compute the five highest-order coe...

متن کامل

A q-QUEENS PROBLEM III. PARTIAL QUEENS

Parts I and II showed that the number of ways to place q nonattacking queens or similar chess pieces on an n× n square chessboard is a quasipolynomial function of n in which the coefficients are essentially polynomials in q. We explore this function for partial queens, which are pieces like the rook and bishop whose moves are a subset of those of the queen. We compute the five highest-order coe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014