Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension.
نویسندگان
چکیده
To explore the role of titin filaments in muscle elasticity, we measured the resting tension-sarcomere length curves of six rabbit skeletal muscles that express three size classes of titin isoform. The stress-strain curves of the split fibers of these muscles displayed a similar multiphasic shape, with an exponential increase in tension at low sarcomere strain followed by a leveling of tension and a decrease in stiffness at and beyond an elastic limit (yield point) at higher sarcomere strain. Significantly, positive correlations exist between the size of the expressed titin isoform, the sarcomere length at the onset of exponential resting tension, and the yield point of each muscle. Immunoelectron microscopic studies of an epitope in the extensible segment of titin revealed a transition in the elastic behavior of the titin filaments near the yield point sarcomere length of these muscles, providing direct evidence of titin's involvement in the genesis of resting tension. Our data led to the formulation of a segmental extension model of resting tension that recognizes the interplay of three major factors in shaping the stress-strain curves: the net contour length of an extensible segment of titin filaments (between the Z line and the ends of the thick filaments), the intrinsic molecular elasticity of titin, and the strength of titin thick filament anchorage. Our data further suggest that skeletal muscle cells may control and modulate stiffness and elastic limit coordinately by selective expression of specific titin isoforms.
منابع مشابه
Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts.
In the pathogenesis of dilated cardiomyopathy, cytoskeletal proteins play an important role. In this study, we analyzed titin expression in left ventricles of 19 control human donors and 9 severely diseased (nonischemic) dilated cardiomyopathy (DCM) transplant-patients, using gel-electrophoresis, immunoblotting, and quantitative RT-PCR. Both human-heart groups coexpressed smaller (approximately...
متن کاملPassive Stiffness Changes Due To Upregulation of Compliant Titin Isoforms in Human Dilated Cardiomyopathy Hearts
In the pathogenesis of dilated cardiomyopathy, cytoskeletal proteins play an important role. In this study, we analyzed titin expression in left ventricles of 19 control human donors and 9 severely diseased (nonischemic) dilated cardiomyopathy (DCM) transplant-patients, using gel-electrophoresis, immunoblotting, and quantitative RT-PCR. Both human-heart groups coexpressed smaller ( 3 MDa) N2B-i...
متن کاملElastic filaments in skeletal muscle revealed by selective removal of thin filaments with plasma gelsolin
Muscle needs an elastic framework to maintain its mechanical stability. Removal of thin filaments in rabbit skeletal muscle with plasma gelsolin has revealed the essential features of elastic filaments. The selective removal of thin filaments was confirmed by staining with phalloidin-rhodamine for fluorescence microscopy, examination of arrowhead formation with myosin subfragment 1 by electron ...
متن کاملThe increase in non-cross-bridge forces after stretch of activated striated muscle is related to titin isoforms.
Skeletal muscles present a non-cross-bridge increase in sarcomere stiffness and tension on Ca(2+) activation, referred to as static stiffness and static tension, respectively. It has been hypothesized that this increase in tension is caused by Ca(2+)-dependent changes in the properties of titin molecules. To verify this hypothesis, we investigated the static tension in muscles containing differ...
متن کاملDevelopmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart.
Before birth, the compliance of the heart is limited predominantly by extracardiac constraint. Reduction of this constraint at birth requires that myocardial compliance be determined mainly by the heart's own constituents. Because titin is a principal contributor to ventricular passive tension (PT), we studied the expression and mechanics of cardiac-titin isoforms during perinatal rat heart dev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 88 16 شماره
صفحات -
تاریخ انتشار 1991