Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants.

نویسندگان

  • E Heinz
  • P G Roughan
چکیده

Photosynthetically active chloroplasts retaining high rates of fatty acid synthesis from [1-(14)C]acetate were purified from leaves of both 16:3 (Solanum nodiflorum, Chenopodium album) and 18:3 plants (Amaranthus lividus, Pisum sativum). A comparison of lipids into which newly synthesized fatty acids were incorporated revealed that, in 18:3 chloroplasts, enzymic activities catalyzing the conversion of phosphatidate to diacylglycerol and of diacylglycerol to monogalactosyl diacylglycerol (MGD) were significantly less active than in 16:3 chloroplasts. In contrast, labeling rates of MGD from UDP-[(14)C]gal were similar for both types of chloroplasts.The composition and positional distribution of labeled fatty acids within the glycerides synthesized by isolated 16:3 and 18:3 chloroplasts were similar and in each case only a C18/C16 diacylglycerol backbone was synthesized. In nodiflorum chloroplasts, C18:1/C16:0 MGD assembled de novo was completely desaturated to the C18:3/C16:3 stage.Whereas newly synthesized C18/C18 MGD could not be detected in any of these chloroplasts if incubated with [(14)C]acetate after isolation, chloroplasts isolated from acetate-labeled leaves contained MGD with labeled C18 fatty acids at both sn-1 and sn-2 positions. Taken together, these results provide further evidence on an organellar level for the operation of pro- and eucaryotic pathways in the biosynthesis of MGD in different groups of plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biosynthesis of digalactosyldiacylglycerol in plastids from 16:3 and 18:3 plants.

Intact chloroplasts isolated from leaves of eight species of 16:3 and 18:3 plants and chromoplasts isolated from Narcissus pseudonarcissus L. flowers synthesize galactose-labeled mono-, di-, and trigalactosyldiacylglycerol (MGDG, DGDG, and TGDG) when incubated with UDP-[6-(3)H]galactose. In all plastids, galactolipid synthesis, and especially synthesis of DGDG and TGDG, is reduced by treatment ...

متن کامل

Lipid and Fatty Acid composition of chloroplast envelope membranes from species with differing net photosynthesis.

Lipid and fatty acid compositions were determined for chloroplast envelope membranes isolated from spinach (Spinacia oleracea L.), sunflower (Helianthus annuus L.), and maize (Zea mays L.) leaves. The lipid composition was similar in sunflower, spinach, and undifferentiated maize chloroplast envelope membranes and different in maize mesophyll chloroplast envelope membranes. The predominant lipi...

متن کامل

Biosynthesis and desaturation of prokaryotic galactolipids in leaves and isolated chloroplasts from spinach.

Mono- and digalactosyldiacylglycerol (MGDG and DGDG) were isolated from the leaves of sixteen 16:3 plants. In all of these plant species, the sn-2 position of MGDG was more enriched in C(16) fatty acids than sn-2 of DGDG. The molar ratios of prokaryotic MGDG to prokaryotic DGDG ranged from 4 to 10. This suggests that 16:3 plants synthesize more prokaryotic MGDG than prokaryotic DGDG. In the 16:...

متن کامل

Nitrogen deficiency in Arabidopsis affects galactolipid composition and gene expression and results in accumulation of fatty acid phytyl esters.

Nitrogen is an essential nutrient for plants because it represents a major constituent of numerous cellular compounds, including proteins, amino acids, nucleic acids and lipids. While N deprivation is known to have severe consequences for primary carbon metabolism, the effect on chloroplast lipid metabolism has not been analysed in higher plants. Nitrogen limitation in Arabidopsis led to a decr...

متن کامل

Maintenance of Chloroplast Structure and Function by Overexpression of the Rice MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE Gene Leads to Enhanced Salt Tolerance in Tobacco.

In plants, the galactolipids monogalactosyldiacylglycerol (MGDG) and digalactodiacylglycerol (DGDG) are major constituents of photosynthetic membranes in chloroplasts. One of the key enzymes for the biosynthesis of these galactolipids is MGDG synthase (MGD). To investigate the role of MGD in the plant's response to salt stress, we cloned an MGD gene from rice (Oryza sativa) and generated tobacc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 72 2  شماره 

صفحات  -

تاریخ انتشار 1983