Invariant Tensors and the Cyclic Sieving Phenomenon

نویسنده

  • Bruce W. Westbury
چکیده

We construct a large class of examples of the cyclic sieving phenomenon by exploiting the representation theory of semi-simple Lie algebras. Let M be a finite dimensional representation of a semi-simple Lie algebra and let B be the associated Kashiwara crystal. For r > 0, the triple (X, c, P ) which exhibits the cyclic sieving phenomenon is constructed as follows: the set X is the set of isolated vertices in the crystal ⊗rB; the map c : X → X is a generalisation of promotion acting on standard tableaux of rectangular shape and the polynomial P is the fake degree of the Frobenius character of a representation of Sr related to the natural action of Sr on the subspace of invariant tensors in ⊗rM . Taking M to be the defining representation of SL(n) gives the cyclic sieving phenomenon for rectangular tableaux.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cyclic Sieving Phenomenon for Faces of Cyclic Polytopes

A cyclic polytope of dimension d with n vertices is a convex polytope combinatorially equivalent to the convex hull of n distinct points on a moment curve in R. In this paper, we prove the cyclic sieving phenomenon, introduced by Reiner-StantonWhite, for faces of an even-dimensional cyclic polytope, under a group action that cyclically translates the vertices. For odd-dimensional cyclic polytop...

متن کامل

The Cyclic Sieving Phenomenon for Non-Crossing Forests

In this paper we prove that the set of non-crossing forests together with a cyclic group acting on it by rotation and a natural q-analogue of the formula for their number exhibits the cyclic sieving phenomenon, as conjectured by Alan Guo.

متن کامل

The Cyclic Sieving Phenomenon for Faces of Generalized Cluster Complexes

The notion of cyclic sieving phenomenon is introduced by Reiner, Stanton, and White as a generalization of Stembridge’s q = −1 phenomenon. The generalized cluster complexes associated to root systems are given by Fomin and Reading as a generalization of the cluster complexes found by Fomin and Zelevinsky. In this paper, the faces of various dimensions of the generalized cluster complexes in typ...

متن کامل

Cyclic Sieving of Noncrossing Partitions for Complex Reflection Groups

We prove an instance of the cyclic sieving phenomenon, occurring in the context of noncrossing parititions for well-generated complex reflection groups.

متن کامل

The cyclic sieving phenomenon

The cyclic sieving phenomenon is defined for generating functions of a set affording a cyclic group action, generalizing Stembridge’s q 1⁄4 1 phenomenon. The phenomenon is shown to appear in various situations, involving q-binomial coefficients, Pólya–Redfield theory, polygon dissections, noncrossing partitions, finite reflection groups, and some finite field q-analogues. r 2004 Elsevier Inc. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016