Nonexistence of certain cubic graphs with small diameters

نویسنده

  • Leif K. Jørgensen
چکیده

Jorgensen, L.K., Nonexistence of certain cubic graphs with small diameters, Discrete Mathematics 114 (1993) 2655273. We consider the maximum number of vertices in a cubic graph with small diameter. We show that a cubic graph of diameter 4 has at most 40 vertices. (The Moore bound is 46 and graphs with 38 vertices are known.) We also consider bipartite cubic graphs of diameter 5, for which the Moore bound is 62. We prove that in this case a graph with 56 vertices found by Bond and Delorme (1988) is optimal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS

Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...

متن کامل

Perfect Dominating Sets on Cube-Connected Cycles

Cube-connected cycles are a family of cubic graphs with relatively small diameters and regular structure, making them attractive models for parallel architecture design. The existence of perfect dominating sets for any structural model of parallel computation is both useful for the construction of efficient algorithms for that structure and indicative of practical design constraints. This paper...

متن کامل

Nonexistence of Small, Smooth, Time-periodic, Spatially Periodic Solutions for Nonlinear Schrödinger Equations

We study the question of nonexistence of small spatially periodic, timeperiodic solutions for cubic nonlinear Schrödinger equations. We prove that for almost any value in a bounded set of possible temporal periods, there is an amplitude threshold, below which any initial value is not the initial value for a time-periodic solution. The proof requires a certain level of Sobolev regularity on solu...

متن کامل

Nonexistence of Some 4-regular Integral Graphs

A graph is called integral if all its eigenvalues are integers. The quest for integral graphs was initiated by F. Harary and A. J. Schwenk [9]. All such cubic graphs were obtained by D. Cvetković and F. C. Bussemaker [2, 1], and independently by A. J. Schwenk [10]. There are exactly thirteen cubic integral graphs. In fact, D. Cvetković [2] proved that the set of regular integral graphs of a fix...

متن کامل

On Edge-Decomposition of Cubic Graphs into Copies of the Double-Star with Four Edges‎

‎A tree containing exactly two non-pendant vertices is called a double-star‎. ‎Let $k_1$ and $k_2$ be two positive integers‎. ‎The double-star with degree sequence $(k_1+1‎, ‎k_2+1‎, ‎1‎, ‎ldots‎, ‎1)$ is denoted by $S_{k_1‎, ‎k_2}$‎. ‎It is known that a cubic graph has an $S_{1,1}$-decomposition if and only if it contains a perfect matching‎. ‎In this paper‎, ‎we study the $S_{1,2}$-decomposit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 114  شماره 

صفحات  -

تاریخ انتشار 1993