Nanodiscs Allow Phage Display Selection for Ligands to Non-Linear Epitopes on Membrane Proteins
نویسندگان
چکیده
In this work, we exploited a method that uses polytopic membrane proteins as targets for phage display selections. Membrane proteins represent the largest class of drug targets and drug discovery is mostly based on the identification of ligands binding to target molecules. The screening of a phage display library for ligands against membrane proteins is typically hindered by the requirement of these proteins for a membrane environment, which is necessary to retain correct folding and epitope formation. Especially in proteins with multiple transmembrane domains, epitopes often are non-linear and consist of a combination of loops between transmembrane stretches of the proteins. Here, we have used bacteriorhodopsin (bR) as a model of polytopic membrane protein, assembled into nanoscale phospholipid bilayers, so called nanodiscs, to screen a phage display library for potential ligands. Nanodiscs provide a native-like environment to membrane proteins and thus selection of ligands can take place in a near physiological state. Screening a 12-mer phage display peptide library against bR nanodiscs led to the isolation of phage clones binding specifically to bR. We were further able to identify the binding site of selected phage clones proving that the clones bind to extramembranous, non-linear epitopes of bR. Thus, nanodiscs provide a suitable and general tool that allows screening of a phage display library against membrane proteins in a near native environment.
منابع مشابه
Identification of a Novel Tumor-Binding Peptide for Lung Cancer Through in-vitro Panning
Tumor-targeted therapies are playing growing roles in cancer research. The exploitation of these powerful therapeutic modalities largely depends on the discovery of tumor-targeting ligands. Phage display has proven a promising high throughput screening tool for the identification of novel specific peptides with high binding affinity to cancer cells. In the present study, we describe the use of ...
متن کاملPuzzling Peptides from a Phage Display Library
The commercial availability of random peptide libraries displayed on the M13 phage is increasing their use forstudies on epitope identification, enzyme inhibitors, receptor ligands, etc. In this study two experimentswhere planned for selection of peptides. First with sheep antibodies, the positive selector was IgG, preparedon Protein G column from a pool of 11 sheeps immunized...
متن کاملIdentification of a Novel Tumor-Binding Peptide for Lung Cancer Through in-vitro Panning
Tumor-targeted therapies are playing growing roles in cancer research. The exploitation of these powerful therapeutic modalities largely depends on the discovery of tumor-targeting ligands. Phage display has proven a promising high throughput screening tool for the identification of novel specific peptides with high binding affinity to cancer cells. In the present study, we describe the use of ...
متن کاملIn vitro selection and characterization of DARPins and Fab fragments for the co-crystallization of membrane proteins: The Na(+)-citrate symporter CitS as an example.
The determination of 3D structures of membrane proteins is still extremely difficult. The co-crystallization with specific binding proteins may be an important aid in this process, as these proteins provide rigid, hydrophilic surfaces for stable protein-protein contacts. Also, the conformational homogeneity of the membrane protein may be increased to obtain crystals suitable for high resolution...
متن کاملPhage display of functional, full-length human and viral membrane proteins.
Phage display of protein and peptide libraries offers a powerful technology for the selection and isolation of ligands and receptors. To date, the technique has been considered limited to soluble, non-membrane proteins. We report two examples of phage display of full-length, folded and functional membrane proteins. Consistent display required the recently reported KO7(+) helper phage. The two p...
متن کامل