Pituitary adenylate cyclase-activating polypeptide innervation of the mudpuppy cardiac ganglion.
نویسندگان
چکیده
The presence and potential origin of the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) was determined in cardiac ganglia of the mudpuppy, Necturus maculosus. Although PACAP has been implicated in the regulation of cardiac function in several mammalian species, the presence of this peptide in the autonomic nervous system (ANS) of other species is unclear. Thus, this study is the first to characterize this highly conserved peptide in the ANS of a non-mammalian species. PACAP-immunoreactivity was observed in nerve fibers throughout the mudpuppy cardiac ganglia and often was co-localized with the sensory neuropeptides substance P and calcitonin gene-related peptide. Removal of all extrinsic inputs to the ganglia by organ culture eliminated PACAP-immunoreactivity in the cardiac ganglia, whereas bilateral vagotomies only partially reduced PACAP-labeling. PACAP-immunoreactive neurons were observed in both high thoracic dorsal root ganglia and in vagal sensory ganglia. While no PACAP-positive neurons were observed in caudal medulla brainstem regions, PACAP-containing nerve fibers were found in the region of the nucleus solitarius. These results suggest that, in the mudpuppy, PACAP is found primarily in visceral afferent fibers, originating from cells in either the dorsal root ganglia or vagal sensory ganglia. Based on their anatomic localization, these afferent fibers may function to transmit important sensory information to cardiovascular centers in the brain as well as serving as local reflex inputs to modulate postganglionic parasympathetic output within the cardiac ganglion itself.
منابع مشابه
Chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulation in rats
Background Preclinical experimental studies revealed an acute alteration of pituitary adenylate cyclase-activating polypeptide in response to a single activation of the trigeminovascular system, which suggests a potential role of pituitary adenylate cyclase-activating polypeptide in the pathogenesis of migraine. However, changes in pituitary adenylate cyclase-activating polypeptide after repeat...
متن کاملPituitary adenylate cyclase-activating polypeptide expression and modulation of neuronal excitability in guinea pig cardiac ganglia.
Cardiac output is regulated by the coordinate interactions of stimulatory sympathetic and inhibitory parasympathetic signals. Intracardiac parasympathetic ganglia are integrative centers of cardiac regulation, and modulation of the parasympathetic drive on the heart is accomplished by altering intrinsic cardiac ganglion neuron excitability. The pituitary adenylate cyclase-activating polypeptide...
متن کاملPituitary adenylate cyclase-activating peptide induces neurite outgrowth in cultured monkey trigeminal ganglion cells: Involvement of receptor PAC1
PURPOSE Our previous studies in the rabbit trigeminal nerve (TgN) showed that pituitary adenylate cyclase-activating peptide (PACAP) accelerated the extension of neuronal processes and recovery of corneal sensitivity. The purposes of the present study were 1) develop a procedure to culture trigeminal nerve (TgN) cells from monkeys, 2) test whether PACAP induces sprouting and elongation of axons...
متن کاملDifferential activation of guinea pig intrinsic cardiac neurons by the PAC1 agonists maxadilan and pituitary adenylate cyclase-activating polypeptide 27 (PACAP27).
Pituitary adenylate cyclase-activating polypeptide (PACAP) evokes tachycardia followed by a larger cholinergic bradycardia in isolated guinea pig hearts. We used the selective PAC1 receptor agonist maxadilan and vasoactive intestinal polypeptide (VIP) to test the hypothesis that PACAP27-evoked tachycardia and bradycardia are mediated by VPAC and PAC1 receptors, respectively. Chronotropic action...
متن کاملPACAP regulation of glucose production Pituitary adenylate cyclase-activating polypeptide stimulates glucose production via the hepatic sympathetic innervation in rats Running title: PACAP regulation of glucose production
1. Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; 2. Dept Neurobiology, Tongji Medical College of Huazhong University of Science and Technology, Hubei, China. 3. Dept Clinical Chemistry Lab Endocrinology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; 4. Dept Endocrinology & Metabolism, Academic Medical Cen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 882 1-2 شماره
صفحات -
تاریخ انتشار 2000