Entropies of Automorphisms of a Topological Markov Shift

نویسنده

  • D. A. LIND
چکیده

Let a be a mixing topological Markov shift, À a weak Perron number, q(t) a polynomial with nonnegative integer coefficients, and r a nonnegative rational. We construct a homeomorphism commuting with o whose topological entropy is \o%\q(\)q(l/\)}r. These values are shown to include the logarithms of all weak Perron numbers, and are dense in the nonnegative reals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating entropy for a class of Z2 Markov random fields and pressure for a class of functions on Z2 shifts of finite type

For a class of Z2 Markov Random Fields (MRFs) μ, we show that the sequence of successive differences of entropies of induced MRFs on strips of height n converges exponentially fast (in n) to the entropy of μ. These strip entropies can be computed explicitly when μ is a Gibbs state given by a nearest-neighbor interaction on a strongly irreducible nearest-neighbor Z2 shift of finite type X . We s...

متن کامل

Entropy and its variational principle for noncompact metric spaces

In the present paper, we introduce a natural extension of AKMtopological entropy for noncompact spaces and prove a variational principle which states that the topological entropy, the supremum of the measure theoretical entropies and the minimum of the metric theoretical entropies always coincide. We apply the variational principle to show that the topological entropy of automorphisms of simply...

متن کامل

ENTROPY OF GEODESIC FLOWS ON SUBSPACES OF HECKE SURFACE WITH ARITHMETIC CODE

There are dierent ways to code the geodesic flows on surfaces with negative curvature. Such code spaces give a useful tool to verify the dynamical properties of geodesic flows. Here we consider special subspaces of geodesic flows on Hecke surface whose arithmetic codings varies on a set with innite alphabet. Then we will compare the topological complexity of them by computing their topological ...

متن کامل

OD-characterization of $U_3(9)$ and its group of automorphisms

Let $L = U_3(9)$ be the simple projective unitary group in dimension 3 over a field  with 92 elements. In this article, we classify groups with the same order and degree pattern as an almost simple group related to $L$. Since $Aut(L)equiv Z_4$ hence almost simple groups related to $L$ are $L$, $L : 2$ or $L : 4$. In fact, we prove that $L$, $L : 2$ and $L : 4$ are OD-characterizable.

متن کامل

Textile Systems on Lambda-graph Systems

The notions of symbolic matrix system and λ-graph system for a subshift are generalizations of symbolic matrix and λ-graph (= finite symbolic matrix) for a sofic shift respectively ([Doc. Math. 4(1999), 285-340]). M. Nasu introduced the notion of textile system for a pair of graph homomorphisms to study automorphisms and endomorphisms of topological Markov shifts ([Mem. Amer. Math. Soc. 546,114...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010