Survivable Network Design with Degree or Order
نویسندگان
چکیده
We present algorithmic and hardness results for network design problems with degree or order constraints. The first problem we consider is the Survivable Network Design problem with degree constraints on vertices. The objective is to find a minimum cost subgraph which satisfies connectivity requirements between vertices and also degree upper bounds Bv on the vertices. This includes the well-studied Minimum Bounded Degree Spanning Tree problem as a special case. Our main result is a (2, 2Bv+3)-approximation algorithm for the edge-connectivity Survivable Network Design problem with degree constraints, where the cost of the returned solution is at most twice the cost of an optimum solution (satisfying the degree bounds) and the degree of each vertex v is at most 2Bv +3. This implies the first constant factor (bicriteria) approximation algorithms for many degree constrained network design problems, including the Minimum Bounded Degree Steiner Forest problem. Our results also extend to directed graphs and provide the first constant factor (bicriteria) approximation algorithms for the Minimum Bounded Degree Arborescence problem and the Minimum Bounded Degree Strongly k-Edge-Connected Subgraph problem. In contrast, we show that the vertex-connectivity Survivable Network Design problem with degree constraints is hard to approximate, even when the cost of every edge is zero. A striking aspect of our algorithmic result is its simplicity. It is based on the iterative relaxation method, which is an extension of Jain’s iterative rounding method. This provides an elegant and unifying algorithmic framework for a broad range of network design problems. We also study the problem of finding a minimum cost λ-edge-connected subgraph with at least k vertices, which we call the (k, λ)-subgraph problem. This generalizes some well-studied classical problems such as the k-MST and the minimum cost λ-edgeconnected subgraph problems. We give a polylogarithmic approximation for the (k, 2)-subgraph problem. However, by relating it to the Densest k-Subgraph problem, we provide evidence that the (k, λ)-subgraph problem might be hard to approximate for arbitrary λ.
منابع مشابه
A Fast Strategy to Find Solution for Survivable Multicommodity Network
This paper proposes an immediately efficient method, based on Benders Decomposition (BD), for solving the survivable capacitated network design problem. This problem involves selecting a set of arcs for building a survivable network at a minimum cost and within a satisfied flow. The system is subject to failure and capacity restriction. To solve this problem, the BD was initially proposed with ...
متن کاملSupply chain network design with multi- mode demand based on acceptance degree of fuzzy constraints violated
This paper designs a mathematical model for supply chain network design problem including plants, distributors and customers in fuzzy environment. Each plant and distributor has several levels capacities. A multi-mode demand strategy is considered for the customers where only one of the modes is to be selected for each customer. Considering the acceptance degree of fuzzy constraints violated, a...
متن کاملImproved Algorithm for Degree Bounded Survivable Network Design Problem
We consider the Degree-Bounded Survivable Network Design Problem: the objective is to find a minimum cost subgraph satisfying the given connectivity requirements as well as the degree bounds on the vertices. If we denote the upper bound on the degree of a vertex v by b(v), then we present an algorithm that finds a solution whose cost is at most twice the cost of the optimal solution while the d...
متن کاملVisualizing Algorithms for the Design and Analysis of Survivable Networks
We present algorithms for the drawing of survivable telecommunication networks. The visualization of telecommunication networks is a very important problem. For some specific rings in a network, we may have a high traffic. The network designers may decide to add more equipment to the nodes (sites) of these rings in order to increase the performance of the network. Therefore, one of the most imp...
متن کاملA Unified Algorithm for Degree Bounded Survivable Network Design
We present an approximation algorithm for the minimum bounded degree Steiner network problem that returns a Steiner network of cost at most two times the optimal and the degree on each vertex v is at most min{bv + 3rmax, 2bv + 2}, where rmax is the maximum connectivity requirement and bv is the given degree bound on v. This unifies, simplifies, and improves the previous results for this problem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009