Ensembles of Multi-Objective Decision Trees
نویسندگان
چکیده
Ensemble methods are able to improve the predictive performance of many base classifiers. Up till now, they have been applied to classifiers that predict a single target attribute. Given the non-trivial interactions that may occur among the different targets in multi-objective prediction tasks, it is unclear whether ensemble methods also improve the performance in this setting. In this paper, we consider two ensemble learning techniques, bagging and random forests, and apply them to multi-objective decision trees (MODTs), which are decision trees that predict multiple target attributes at once. We empirically investigate the performance of ensembles of MODTs. Our most important conclusions are: (1) ensembles of MODTs yield better predictive performance than MODTs, and (2) ensembles of MODTs are equally good, or better than ensembles of single-objective decision trees, i.e., a set of ensembles for each target. Moreover, ensembles of MODTs have smaller model size and are faster to learn than ensembles of single-objective decision trees.
منابع مشابه
A comparison of stacking with meta decision trees to other combining methods
Meta decision trees (MDTs) are a method for combining multiple classifiers. We present an integration of the algorithm MLC4.5 for learning MDTs into the Weka data mining suite. We compare classifier ensembles combined with MDTs to bagged and boosted decision trees, and to classifier ensembles combined with other methods: voting, grading, multi-scheme and stacking with multi-response linear regr...
متن کاملExploiting random projections and sparsity with random forests and gradient boosting methods - Application to multi-label and multi-output learning, random forest model compression and leveraging input sparsity
Within machine learning, the supervised learning field aims at modeling the input-output relationship of a system, from past observations of its behavior. Decision trees characterize the input-output relationship through a series of nested $if-then-else$ questions, the testing nodes, leading to a set of predictions, the leaf nodes. Several of such trees are often combined together for state-of-...
متن کاملUsing single- and multi-target regression trees and ensembles to model a compound index of vegetation condition
An important consideration in conservation and biodiversity planning is an appreciation of the condition or integrity of ecosystems. In this study, we have applied various machine learning methods to the problem of predicting the condition or quality of the remnant indigenous vegetation across an extensive area of South-eastern Australia – the state of Victoria. The field data were obtained usi...
متن کاملOverfitting cautious selection of classifier ensembles with genetic algorithms
Information fusion research has recently focused on the characteristics of the decision profiles of ensemble members in order to optimize performance. These characteristics are particularly important in the selection of ensemble members. However, even though the control of overfitting is a challenge in machine learning problems, much less work has been devoted to the control of overfitting in s...
متن کاملMulti-target regression with rule ensembles
Methods for learning decision rules are being successfully applied to many problem domains, in particular when understanding and interpretation of the learned model is necessary. In many real life problems, we would like to predict multiple related (nominal or numeric) target attributes simultaneously. While several methods for learning rules that predict multiple targets at once exist, they ar...
متن کامل