Flagellar swimmers oscillate between pusher- and puller-type swimming.

نویسندگان

  • Gary S Klindt
  • Benjamin M Friedrich
چکیده

Self-propulsion of cellular microswimmers generates flow signatures, commonly classified as pusher and puller type, which characterize hydrodynamic interactions with other cells or boundaries. Using experimentally measured beat patterns, we compute that the flagellated green alga Chlamydomonas oscillates between pusher and puller, rendering it an approximately neutral swimmer, when averaging over its full beat cycle. Beyond a typical distance of 100μm from the cell, inertia attenuates oscillatory microflows. We show that hydrodynamic interactions between cells oscillate in time and are of similar magnitude as stochastic swimming fluctuations. From our analysis, we also find that the rate of hydrodynamic dissipation varies in time, which implies that flagellar beat patterns are not optimized with respect to this measure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amoeboid motion in confined geometry.

Many eukaryotic cells undergo frequent shape changes (described as amoeboid motion) that enable them to move forward. We investigate the effect of confinement on a minimal model of amoeboid swimmer. A complex picture emerges: (i) The swimmer's nature (i.e., either pusher or puller) can be modified by confinement, thus suggesting that this is not an intrinsic property of the swimmer. This swimmi...

متن کامل

Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid.

We numerically study the effect of solid boundaries on the swimming behavior of a motile microorganism in viscoelastic media. Understanding the swimmer-wall hydrodynamic interactions is crucial to elucidate the adhesion of bacterial cells to nearby substrates which is precursor to the formation of the microbial biofilms. The microorganism is simulated using a squirmer model that captures the ma...

متن کامل

The flagellar motor of Caulobacter crescentus generates more torque when a cell swims backward

Caulobacter crescentus, a monotrichous bacterium, swims by rotating a single right-handed helical filament. CW motor rotation thrusts the cell forward 1, a mode of motility known as the pusher mode; CCW motor rotation pulls the cell backward, a mode of motility referred to as the puller mode 2. The situation is opposite in E. coli, a peritrichous bacterium, where CCW rotation of multiple left-h...

متن کامل

Amoeboid swimming in a channel.

Several micro-organisms, such as bacteria, algae, or spermatozoa, use flagellar or ciliary activity to swim in a fluid, while many other micro-organisms instead use ample shape deformation, described as amoeboid, to propel themselves either by crawling on a substrate or swimming. Many eukaryotic cells were believed to require an underlying substratum to migrate (crawl) by using membrane deforma...

متن کامل

Active matter invasion of a viscous fluid and a no-flow theorem

We investigate the dynamics of hydrodynamically interacting motile and non-motile stress-generating swimmers or particles as they invade a surrounding viscous fluid. Colonies of aligned pusher particles are shown to elongate in the direction of particle orientation and undergo a cascade of transverse concentration instabilities. Colonies of aligned puller particles instead are found to elongate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 92 6  شماره 

صفحات  -

تاریخ انتشار 2015