Superfast Multifrontal Method for Structured Linear Systems of Equations
نویسندگان
چکیده
In this paper we develop a fast direct solver for discretized linear systems using the multifrontal method together with low-rank approximations. For linear systems arising from certain partial differential equations such as elliptic equations we discover that during the Gaussian elimination of the matrices with proper ordering, the fill-in has a low-rank property: all off-diagonal blocks have small numerical ranks with proper definition of off-diagonal blocks. Matrices with this low-rank property can be efficiently approximated with some semiseparable structures, called hierarchically semiseparable (HSS) representations. We reveal the above low-rank property by ordering the variables with nested dissection and eliminating them with the multifrontal method. All matrix operations in the multifrontal method are performed in HSS forms. We present efficient ways to build compact HSS structures along the elimination. Necessary HSS matrix operations for the structured multifrontal method are proposed. By taking advantage of the low-rank property the multifrontal method with HSS structures can be shown to have linear complexity and to require only linear storage. We therefore call this structured method a superfast multifrontal method. It is especially suitable for large problems, and also has natural adaptability to parallel computations and great potential to provide effective preconditioners. Numerical results demonstrate the efficiency.
منابع مشابه
Superfast Multifrontal Method for Large Structured Linear Systems of Equations
In this paper we develop a fast direct solver for large discretized linear systems using the supernodal multifrontal method together with low-rank approximations. For linear systems arising from certain partial differential equations such as elliptic equations, during the Gaussian elimination of the matrices with proper ordering, the fill-in has a low-rank property: all off-diagonal blocks have...
متن کاملEfficient Scalable Algorithms for Hierarchically Semiseparable Matrices
Hierarchically semiseparable (HSS) matrix algorithms are emerging techniques in constructing the superfast direct solvers for both dense and sparse linear systems. Here, we develope a set of novel parallel algorithms for the key HSS operations that are used for solving large linear systems. These include the parallel rank-revealing QR factorization, the HSS constructions with hierarchical compr...
متن کاملIMF: An Incomplete Multifrontal LU-Factorization for Element-Structured Sparse Linear Systems
We propose an incomplete multifrontal LU-factorization (IMF) preconditioner that extends supernodal multifrontal methods to incomplete factorizations. It can be used as a preconditioner in a Krylov-subspace method to solve large-scale sparse linear systems with an element structure; e.g., those arising from a finite element discretization of a partial differential equation. The fact that the el...
متن کاملA Superfast Algorithm for Toeplitz Systems of Linear Equations
In this paper we develop a new superfast solver for Toeplitz systems of linear equations. To solve Toeplitz systems many people use displacement equation methods. With displacement structures, Toeplitz matrices can be transformed into Cauchy-like matrices using the FFT or other trigonometric transformations. These Cauchy-like matrices have a special property, that is, their off-diagonal blocks ...
متن کاملMfrs: an Algorithm for the Structured Multifrontal Solution of Large Sparse Matrices via Randomized Sampling
This paper presents strategies for the development of an efficient algorithm (MFRS) for the direct solutions of large sparse linear systems. The algorithm is based on a structured multifrontal method with randomized sampling. We propose data structures and access schemes for a type of rank structured matrices, called Hierarchically SemiSeparable (HSS) forms. A data tree structure is used for HS...
متن کامل