Superization and (q, t)-Specialization in Combinatorial Hopf Algebras
نویسندگان
چکیده
We extend a classical construction on symmetric functions, the superization process, to several combinatorial Hopf algebras, and obtain analogs of the hook-content formula for the (q, t)-specializations of various bases. Exploiting the dendriform structures yields in particular (q, t)-analogs of the Björner-Wachs q-hook-length formulas for binary trees, and similar formulas for plane trees.
منابع مشابه
t-analogue of the q-characters of finite dimensional representations of quantum affine algebras
Frenkel-Reshetikhin introduced q-characters of finite dimensional representations of quantum affine algebras [6]. We give a combinatorial algorithm to compute them for all simple modules. Our tool is t-analogue of the q-characters, which is similar to Kazhdan-Lusztig polynomials, and our algorithm has a resemblance with their definition. We need the theory of quiver varieties for the definition...
متن کاملA pr 2 00 8 COMBINATORIAL HOPF ALGEBRAS , NONCOMMUTATIVE HALL - LITTLEWOOD FUNCTIONS , AND PERMUTATION TABLEAUX
We introduce a new family of noncommutative analogs of the HallLittlewood symmetric functions. Our construction relies upon Tevlin’s bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an explici...
متن کاملCombinatorial Hopf Algebras of Simplicial Complexes
We consider a Hopf algebra of simplicial complexes and provide a cancellation-free formula for its antipode. We then obtain a family of combinatorial Hopf algebras by defining a family of characters on this Hopf algebra. The characters of these combinatorial Hopf algebras give rise to symmetric functions that encode information about colorings of simplicial complexes and their f -vectors. We al...
متن کاملJ ul 2 00 8 COMBINATORIAL HOPF ALGEBRAS , NONCOMMUTATIVE HALL - LITTLEWOOD FUNCTIONS , AND PERMUTATION TABLEAUX
We introduce a new family of noncommutative analogues of the HallLittlewood symmetric functions. Our construction relies upon Tevlin’s bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an expli...
متن کاملCombinatorial Hopf Algebras, Noncommutative Hall-littlewood Functions, and Permutation Tableaux
We introduce a new family of noncommutative analogs of the HallLittlewood symmetric functions. Our construction relies upon Tevlin’s bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an explici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 16 شماره
صفحات -
تاریخ انتشار 2009