Hardware Implementation of a Neural Network Controller with an MCU and an FPGA for Nonlinear Systems
نویسندگان
چکیده
This paper presents the hardware implementation of a neural network controller for a nonlinear system with a micro-controller unit (MCU) and a field programmable gate array (FPGA) chip. As an on-line learning algorithm of a neural network, the reference compensation technique has been implemented on an MCU, while PID controllers with other functions such as counters and PWM generators are implemented on an FPGA chip. Interface between an MCU and a field programmable gate array (FPGA) chip has been developed to complete hardware implementation of a neural controller. The developed neural control hardware has been tested for balancing the inverted pendulum while controlling a desired trajectory of a cart as a nonlinear system.
منابع مشابه
Hardware Implementation of a Neuralnetwork Controler with an Mcu and an Fpga for a Nonlinear System
This paper presents the hardware implementation of a neural network controller for a nonlinear system. As a learning algorithm for a neural network, the reference compensation technique has been implemented on a low cost micro-controller unit (MCU), while PID controllers with counters and PWM generators are implemented on an FPGA chip. Interface between an MCU and a field programmable gate arra...
متن کاملNeuro-fuzzy control of bilateral teleoperation system using FPGA
This paper presents an adaptive neuro-fuzzy controller ANFIS (Adaptive Neuro-Fuzzy Inference System) for a bilateral teleoperation system based on FPGA (Field Programmable Gate Array). The proposed controller combines the learning capabilities of neural networks with the inference capabilities of fuzzy logic, to adapt with dynamic variations in master and slave robots and to guarantee good prac...
متن کاملIterative learning identification and control for dynamic systems described by NARMAX model
A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...
متن کاملApplication of ANN Technique for Interconnected Power System Load Frequency Control (RESEARCH NOTE)
This paper describes an application of Artificial Neural Networks (ANN) to Load Frequency Control (LFC) of nonlinear power systems. Power systems, such as other industrial processes, have parametric uncertainties that for controller design had to take the uncertainties in to account. For this reason, in the design of LFC controller the idea of robust control theories are being used. To improve ...
متن کاملRejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller
This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays. An optimization procedure for a neural MPC algorithm based on this model is then developed. T...
متن کامل