A Constitutive Description for Shape Memory Alloys with the Growth of Martensite Band

نویسندگان

  • Weiguo Li
  • Xueliang Shen
  • Xianghe Peng
چکیده

Based on the experimental results and the finite element analysis, a constitutive model is proposed for two phase shape memory alloys by introducing a compensative volumetric strain into a constrained relationship between the two phases, accounting for the reduced constraint due to the growth of martensite band. The pseudoelasticity of NiTi shape memory alloy micro-tube, subjected to pure tension, is analyzed and compared with the experimental results. It can be seen that the pseudoelastic behavior, especially the phenomena of a stress drop during tension processes, can be well described with the proposed model. The proposed model separates the complicated constitutive behavior of a shape memory alloy (SMA) into simple responses arising respectively from its two phases, taking into account laminar microstructure, the thickness of martensite phase and the interaction between the two phases, and provides an easy but comprehensive method for the description of the constitutive behavior of SMAs under complex thermomechanical loading.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Vibration Analysis of Composite Plates with SMA Wires, Considering Instantaneous Variations of the Martensite Volume Fraction

In the past few years, extensive improvements have been accomplished in reinforcing the structures through using shape memory alloys (SMAs). These materials absorb or dissipate energy through establishing a reversible hysteresis loop during a cyclic mechanical loading. This unique characteristic of the SMAs has made them appropriate for sensing, actuation, absorbing the impact energy, and vibra...

متن کامل

A micromechanics-inspired constitutive model for shape-memory alloys that accounts for initiation and saturation of phase transformation

A constitutive model to describe macroscopic elastic and transformation behaviors of polycrystalline shape-memory alloys is formulated using an internal variable thermodynamic framework. In a departure from prior phenomenological models, the proposed model treats initiation, growth kinetics, and saturation of transformation distinctly, consistent with physics revealed by recent multi-scale expe...

متن کامل

Influence of heat generation on the phase transformations and impact responses of composite plates with embedded SMA wires

In the present research, in contrast to the available papers, not only the superelasticity but also the shape memory effects are taken into account in determination of the impact responses. At the same time, in addition to modifying Brinson’s model for the shape memory alloys (SMAs), to include new parameters and loading events, and Hertz contact law, distributions of the SMA phases are conside...

متن کامل

Theoretical modelling of the effect of plasticity on reverse transformation in superelastic shape memory alloys

Stimulated by recent experimental results on superelastic NiTi shape memory alloy, a theoretical study is carried out to quantify the effect of plasticity on stress-induced martensite transformation, using a constitutive model that combines phase transformation and plasticity. A constraint equation is introduced to quantify the phenomenon of the stabilisation of plasticity on stress-induced mar...

متن کامل

A Thermodynamical Constitutive Model for Shape Memory Materials. Part I. the Monolithic Shape Memory Alloy

Pseudoelasticity and the shape memory e ect (SME) due to martensitic transformation and reorientation of polycrystalline shape memory alloy (SMA) materials are modelled using a free energy function and a dissipation potential. Three di erent cases are considered, based on the number of internal state variables in the free energy: (1) Austenite plus a variable number of martensite variants; (2) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014