Scriptaid, a novel histone deacetylase inhibitor, enhances the response of human tumor cells to radiation.
نویسندگان
چکیده
A group of histone deacetylase (HDAC) inhibitors has been shown to suppress the growth of a variety of human tumor lines in vitro and in vivo and they are among the most promising candidates for anti-cancer therapeutic agents. We investigated the ability of scriptaid, a novel HDAC inhibitor and trichostatin A (TSA) to enhance cell killing by radiation in radioresistant SQ-20B cells derived from human head and neck squamous carcinoma. SQ-20B cells were treated with scriptaid or TSA in combination with radiation. Cell survival was determined by a colony formation assay and protein levels were examined by Western blotting. DNA double strand breaks were measured by a gamma-H2AX focus assay. Radiosensitization was observed for SQ-20B cells incubated with scriptaid at 5 microM or TSA at 0.1 microM for 24 h. Radiosensitization by scriptaid was accompanied by a prolonged retention of gamma-H2AX foci, suggesting that the enhancement of radiation cell killing by scriptaid involved inhibition of DNA double strand break repair. In addition, treatment with scriptaid suppressed expression of Ku80, but not Ku70. Scriptaid may be a useful radiosensitizer in the treatment of radioresistant human carcinomas.
منابع مشابه
Histone deacetylase inhibitor Scriptaid reactivates latent HIV-1 promoter by inducing histone modification in in vitro latency cell lines.
Human immunodeficiency virus type 1 (HIV-1) latency remains a major problem for the eradication of viruses in infected individuals undergoing highly active anti-retroviral therapy. By inhibiting HIV-1 gene expression and virus production, histone deacetylase (HDAC) may contribute to the quiescence of HIV-1 within resting CD4+ T cells. A novel HDAC inhibitor, Scriptaid, has been found to have ro...
متن کاملHDAC inhibitor, scriptaid, induces glioma cell apoptosis through JNK activation and inhibits telomerase activity
The present study identified a novel mechanism of induction of apoptosis in glioblastoma cells by scriptaid - a histone deacetylase (HDAC) inhibitor. Scriptaid reduced glioma cell viability by increasing Jun N-terminal kinase (JNK) activation. Although scriptaid induced activation of both p38MAPK and JNK, it was the inhibition of JNK that attenuated scriptaid-induced apoptosis significantly. Sc...
متن کاملHDAC Inhibitors and Heat Shock Proteins (Hsps)
Epigenetic alterations, including DNA acetylation, hypermethylation and hypomethylation, and the associated transcriptional changes of the affected genes are central to the evolution and progression of various human cancers, including pancreatic cancer. Cancer-associated epigenetic alterations are attractive therapeutic targets because such epigenetic alterations, unlike genetic changes, are po...
متن کاملScriptaid overcomes hypoxia-induced cisplatin resistance in both wild-type and mutant p53 lung cancer cells
Non-small cell lung cancer (NSCLC), comprising 85% of lung cancer cases, has been associated with resistance to chemo/radiotherapy. The hypoxic tumor micro-environment, where insufficient vasculature results in poor drug penetrance and sub-optimal chemotherapy in the tumor interiors contributes heavily to this resistance. Additionally, epigenetic changes in tumorigenic cells also change their r...
متن کاملHistone deacetylase inhibitor scriptaid induces cell cycle arrest and epigenetic change in colon cancer cells.
Histone deacetylase inhibitors (HDACIs) are involved in cell growth, apoptosis and differentiation. This study aimed to investigate the effects of HDACI scriptaid on histone modification, demethylation, cell growth, cell cycle and apoptosis in the RKO colorectal cancer cell line and screening for scriptaid-induced genes. RKO cells were treated with 5-aza-2'-deoxycytidine (5-aza-dC), trichostati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of molecular medicine
دوره 25 1 شماره
صفحات -
تاریخ انتشار 2010