Manganese(II) pyrimidine-4,6-dicarboxylates: synthetic, structural, magnetic, and adsorption insights.
نویسندگان
چکیده
A series of manganese(II) coordination polymers containing the bridging ligand pyrimidine-4,6-dicarboxylate (pmdc) have been prepared. The stoichiometries and structural features of these materials, which range from the one-dimensional (1D) chains in ([Mn(mu-pmdc)(H2O)3].2H2O)n (1) and ([Mn2(mu-pmdc)2(H2O)5].2H2O)n (2) to the two-dimensional layers in ([Mn(mu3-pmdc)(H2O)].H2O)n (3) or the three-dimensional porous network in ([Mn(pmdc)].2H2O)n (4), are extremely dependent on the synthetic conditions (i.e., temperature and solvent). In spite of the structural diversity of these systems, crystallographic studies revealed that the pmdc ligand typically displays a tetradentate mu-(kappaO,kappaN:kappaO'',kappaN') coordination mode with the carboxylate groups almost coplanar with the pyrimidine ring [as in compounds 1 and 2 and compound 5 described below)]. In compound 3, the pmdc moiety adopts a pentadentate mu3-(kappaO,kappaN:kappaO'',kappaN':kappaO) coordination mode. The thermal, magnetic, and adsorption properties of these systems were also studied. The results showed that these compounds behave as antiferromagnets as a consequence of efficient magnetic exchange through the pmdc bridges. Compound 4 possesses permanent porosity, as proved by gas sorption data (N2 at 77 K and CO2 at 293 K). Finally, the heteronuclear iron(II)/manganese(II) compound ([FeMn(mu-pmdc)2(H2O)5].2H2O)n (5), which is isomorphous to 2, was also prepared and fully characterized.
منابع مشابه
Fast and efficient adsorptive removal of manganese (II) from aqueous solutions using malicorium magnetic nanocomposites
Malicorium supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles were synthesized by a low-cost, simple,and environmentally benign procedure. The adsorbent was characterized by several methods includingX-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infraredspectroscopy (FT-IR). Then, the potential of malicorium supported Ni0.5Zn0.5Fe2O4 magneticnanoparticles was in...
متن کاملRational design of 1-D metal-organic frameworks based on the novel pyrimidine-4,6-dicarboxylate ligand. New insights into pyrimidine through magnetic interaction.
Single crystal X-ray analysis of compounds H2pmdc.2H2O (1), KHpmdc (2), and K2pmdc (3) shows that the pyrimidine-4,6-dicarboxylate (pmdc) dianion presents an almost planar geometry which confers a potential capability to act as a bis-bidentate bridging ligand, and therefore, to construct 1-D metal complexes. Based on this assumption, we have designed the first six transition metal complexes bas...
متن کاملcatena-Poly[[[triaquamanganese(II)]-μ-4,4′-bipyridine-κ2 N:N′-[triaquamanganese(II)]-μ-pyrimidine-4,6-dicarboxylato-κ4 N 1,O 6:N 3,O 4] sulfate trihydrate]
The two independent Mn(II) ions in the polymeric title compound, {[Mn(2)(C(6)H(2)N(2)O(4))(C(10)H(8)N(2))(H(2)O)(6)]SO(4)·3H(2)O}, exhibit distorted MnN(2)O(4) octa-hedral coordination geometries, with the pyrimidine-4,6-dicarboxyl-ate (pmdc) ligand acting in the bis-chelating μ-(κO,κN:κO',κN') bridging mode and the 4,4'-bipyridine (bpy) ligand in the μ-(κN:κN') bridging mode. The remaining coo...
متن کاملMulti-component preparation of diethyl/methyl 1,3-diaryl-1,2,3,6-tetrahydro-pyrimidine-4,5-dicarboxylates using hydrated phosphomolybdic acid as an efficient catalyst
The synthesis of diethyl/methyl 1,3-diaryl-1,2,3,6-tetrahydro-pyrimidine-4,5-dicarboxylates can be achieved using one-pot reaction from dialkylacetylene dicarboxylate, amines, and formaldehyde by employing hydrated phosphomolybdic acid (H3[P(Mo3O10)4].xH2O) as catalyst at room temperature. The effect of various solvent and catalyst amount was investigated. The salient features of the present me...
متن کاملMulti-component preparation of diethyl/methyl 1,3-diaryl-1,2,3,6-tetrahydro-pyrimidine-4,5-dicarboxylates using hydrated phosphomolybdic acid as an efficient catalyst
The synthesis of diethyl/methyl 1,3-diaryl-1,2,3,6-tetrahydro-pyrimidine-4,5-dicarboxylates can be achieved using one-pot reaction from dialkylacetylene dicarboxylate, amines, and formaldehyde by employing hydrated phosphomolybdic acid (H3[P(Mo3O10)4].xH2O) as catalyst at room temperature. The effect of various solvent and catalyst amount was investigated. The salient features of the present me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inorganic chemistry
دوره 47 12 شماره
صفحات -
تاریخ انتشار 2008