Probabilistic Soft Interventions in Conditional Gaussian Networks
نویسندگان
چکیده
We introduce a general concept of probabilistic interventions in Bayesian networks. This generalizes deterministic interventions, which fix nodes to certain states. We propose “pushing” variables in the direction of target states without fixing them. We formalize this idea in a Bayesian framework based on Conditional Gaussian networks.
منابع مشابه
Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملConstrained consumable resource allocation in alternative stochastic networks via multi-objective decision making
Many real projects complete through the realization of one and only one path of various possible network paths. Here, these networks are called alternative stochastic networks (ASNs). It is supposed that the nodes of considered network are probabilistic with exclusive-or receiver and exclusive-or emitter. First, an analytical approach is proposed to simplify the structure of t...
متن کاملA hybrid method to find cumulative distribution function of completion time of GERT networks
This paper proposes a hybrid method to find cumulative distribution function (CDF) of completion time of GERT-type networks (GTN) which have no loop and have only exclusive-or nodes. Proposed method is cre-ated by combining an analytical transformation with Gaussian quadrature formula. Also the combined crude Monte Carlo simulation and combined conditional Monte Carlo simulation are developed a...
متن کاملExact Inference on Conditional Linear Γ-Gaussian Bayesian Networks
Exact inference for Bayesian Networks is only possible for quite limited classes of networks. Examples of such classes are discrete networks, conditional linear Gaussian networks, networks using mixtures of truncated exponentials, and networks with densities expressed as truncated polynomials. This paper defines another class with exact inference, based on the normal inverse gamma conjugacy. We...
متن کاملDynamic Bayesian Networks with Deterministic Latent Tables
The application of latent/hidden variable Dynamic Bayesian Networks is constrained by the complexity of marginalising over latent variables. For this reason either small latent dimensions or Gaussian latent conditional tables linearly dependent on past states are typically considered in order that inference is tractable. We suggest an alternative approach in which the latent variables are model...
متن کامل