On deterministic rendezvous at a node of agents with arbitrary velocities

نویسندگان

  • Sébastien Bouchard
  • Yoann Dieudonné
  • Andrzej Pelc
  • Franck Petit
چکیده

We consider the task of rendezvous in networks modeled as undirected graphs. Two mobile agents with different labels, starting at different nodes of an anonymous graph, have to meet. This task has been considered in the literature under two alternative scenarios: weak and strong. Under the weak scenario, agents may meet either at a node or inside an edge. Under the strong scenario, they have to meet at a node, and they do not even notice meetings inside an edge. Rendezvous algorithms under the strong scenario are known for synchronous agents. For asynchronous agents, rendezvous under the strong scenario is impossible even in the two-node graph, and hence only algorithms under the weak scenario were constructed. In this paper we show that rendezvous under the strong scenario is possible for agents with restricted asynchrony: agents have the same measure of time but the adversary can arbitrarily impose the speed of traversing each edge by each of the agents. We construct a deterministic rendezvous algorithm for such agents, working in time polynomial in the size of the graph, in the length of the smaller label, and in the largest edge traversal time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deterministic Rendezvous at a Node of Agents with Arbitrary Velocities

We consider the task of rendezvous in networks modeled as undirected graphs. Two mobile agents with different labels, starting at different nodes of an anonymous graph, have to meet. This task has been considered in the literature under two alternative scenarios: weak and strong. Under the weak scenario, agents may meet either at a node or inside an edge. Under the strong scenario, they have to...

متن کامل

Polynomial Deterministic Rendezvous in Arbitrary Graphs

The rendezvous problem in graphs has been extensively studied in the literature, mainly using a randomized approach. Two mobile agents have to meet at some node of a connected graph. We study deterministic algorithms for this problem, assuming that agents have distinct identifiers and are located in nodes of an unknown anonymous connected graph. Startup times of the agents are arbitrarily decid...

متن کامل

Deterministic Rendezvous with Detection Using Beeps

Two mobile agents, starting at arbitrary, possibly different times from arbitrary nodes of an unknown network, have to meet at some node. Agents move in synchronous rounds: in each round an agent can either stay at the current node or move to one of its neighbors. Agents have different labels which are positive integers. Each agent knows its own label, but not the label of the other agent. In t...

متن کامل

Deterministic Rendezvous in Trees with Little Memory

We study the size of memory of mobile agents that permits to solve deterministically the rendezvous problem, i.e., the task of meeting at some node, for two identical agents moving from node to node along the edges of an unknown anonymous connected graph. The rendezvous problem is unsolvable in the class of arbitrary connected graphs, as witnessed by the example of the cycle. Hence we restrict ...

متن کامل

Self-stabilizing Rendezvous of Synchronous Mobile Agents in Graphs

We investigate self-stabilizing rendezvous algorithms for two synchronous mobile agents. The rendezvous algorithms make two mobile agents meet at a single node, starting from arbitrary initial locations and arbitrary initial states. We study deterministic algorithms for two synchronous mobile agents with different labels but without using any whiteboard in the graph. First, we show the existenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 133  شماره 

صفحات  -

تاریخ انتشار 2018