Ranking Sentences for Extractive Summarization with Reinforcement Learning
نویسندگان
چکیده
Single document summarization is the task of producing a shorter version of a document while preserving its principal information content. In this paper we conceptualize extractive summarization as a sentence ranking task and propose a novel training algorithm which globally optimizes the ROUGE evaluation metric through a reinforcement learning objective. We use our algorithm to train a neural summarization model on the CNN and DailyMail datasets and demonstrate experimentally that it outperforms state-of-the-art extractive and abstractive systems when evaluated automatically and by humans.
منابع مشابه
Using Machine Learning Methods and Linguistic Features in Single-Document Extractive Summarization
Extractive summarization of text documents usually consists of ranking the document sentences and extracting the top-ranked sentences subject to the summary length constraints. In this paper, we explore the contribution of various supervised learning algorithms to the sentence ranking task. For this purpose, we introduce a novel sentence ranking methodology based on the similarity score between...
متن کاملApplying two-level reinforcement ranking in query-oriented multidocument summarization
Sentence ranking is the issue of most concern in document summarization today. While traditional featurebased approaches evaluate sentence significance and rank the sentences relying on the features that are particularly designed to characterize the different aspects of the individual sentences, the newly emerging graphbased ranking algorithms (such as the PageRank-like algorithms) recursively ...
متن کاملExtractive Spoken Document Summarization with Representation Learning Techniques
The rapidly increasing availability of multimedia associated with spoken documents on the Internet has prompted automatic spoken document summarization to be an important research subject. Thus far, the majority of existing work has focused on extractive spoken document summarization, which selects salient sentences from an original spoken document according to a target summarization ratio and ...
متن کاملA reinforcement learning formulation to the complex question answering problem
We use extractive multi-document summarization techniques to perform complex question answering and formulate it as a reinforcement learning problem. Given a set of complex questions, a list of relevant documents per question, and the corresponding human generated summaries (i.e. answers to the questions) as training data, the reinforcement learning module iteratively learns a number of feature...
متن کاملText Summarization Using Cuckoo Search Optimization Algorithm
Today, with rapid growth of the World Wide Web and creation of Internet sites and online text resources, text summarization issue is highly attended by various researchers. Extractive-based text summarization is an important summarization method which is included of selecting the top representative sentences from the input document. When, we are facing into large data volume documents, the extr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.08636 شماره
صفحات -
تاریخ انتشار 2018