Depletion of WRN enhances DNA damage in HeLa cells exposed to the benzene metabolite, hydroquinone.
نویسندگان
چکیده
Werner syndrome is a progeroid disorder caused by mutations of the WRN gene. The encoded WRN protein belongs to the family of RecQ helicases that plays a role in the maintenance of genomic stability. Single nucleotide polymorphisms in WRN have been associated with an increased risk for some cancers and were recently linked to benzene hematotoxicity. To further address the role of WRN in benzene toxicity, we employed RNA interference (RNAi) to silence endogenous WRN in HeLa cells and examined the susceptibility of these WRN-depleted cells to the toxic effects of the benzene metabolite hydroquinone. HeLa cells were used as the experimental model because RNAi is highly effective in this system producing almost complete depletion of the target protein. Depletion of WRN led to a decrease in cell proliferation and an enhanced susceptibility to hydroquinone cytotoxicity as revealed by an increase in necrosis. WRN-depleted HeLa cells treated with hydroquinone also displayed an increase in the amount of DNA double-strand breaks as determined by the Comet assay, and an elevated DNA damage response as indicated by the sevenfold induction of gammaH2AX and acetyl-p53 (Lys373 and Lys382) over control levels. Together, these results show that WRN plays an important role in the protection of HeLa cells against the toxicity of the benzene metabolite hydroquinone, specifically in mounting a normal DNA damage response following the induction of DNA double-strand breaks. Further studies in bone marrow-derived stem or progenitor cells are required to confirm our findings in HeLa cells and expand our ability to extrapolate the results to benzene toxicity in humans.
منابع مشابه
Werner syndrome protein, WRN, protects cells from DNA damage induced by the benzene metabolite hydroquinone.
Werner syndrome (WS) is a rare autosomal progeroid disorder caused by a mutation in the gene encoding the WRN (Werner syndrome protein), a member of the RecQ family of helicases with a role in maintaining genomic stability. Genetic association studies have previously suggested a link between WRN and susceptibility to benzene-induced hematotoxicity. To further explore the role of WRN in benzene-...
متن کاملLarge-scale evaluation of candidate genes identifies associations between DNA repair and genomic maintenance and development of benzene hematotoxicity.
Benzene is an established human hematotoxicant and leukemogen but its mechanism of action is unclear. To investigate the role of single-nucleotide polymorphisms (SNPs) on benzene-induced hematotoxicity, we analyzed 1395 SNPs in 411 genes using an Illumina GoldenGate assay in 250 benzene-exposed workers and 140 unexposed controls. Highly significant findings clustered in five genes (BLM, TP53, R...
متن کاملDifferent non-synonymous polymorphisms modulate the interaction of the WRN protein to its protein partners and its enzymatic activities
Werner syndrome (WS) is characterized by the premature onset of several age-associated pathologies including cancer. The protein defective in WS patients (WRN) is a helicase/exonuclease involved in DNA replication and repair. Here, we present the results of a large-scale proteome analysis that has been undertaken to determine protein partners of different polymorphic WRN proteins found with rel...
متن کاملProtective Effect of Encapsulated Nanocurcumin- PEGOA against Oxidative Damage on Human Mesenchymal Stem Cells Exposed to Hydroquinone as a Risk Factor for Leukemia
Introduction: Benzene a well-known environmental pollutant is a human carcinogen which is involved in the manifestation of a number of malignancies. Activation of benzene and its reactive metabolites such as hydroquinone (HQ) leads to continuous production of reactive oxygen species (ROS), causing oxidative Stress. Curcumin, the yellow pigment of curcuma longa, has been shown to possess antioxi...
متن کاملPolymorphisms in genes involved in DNA double-strand break repair pathway and susceptibility to benzene-induced hematotoxicity.
Benzene is a recognized hematotoxicant and carcinogen that produces genotoxic damage. DNA double-strand breaks (DSB) are one of the most severe DNA lesions caused directly and indirectly by benzene metabolites. DSB may lead to chromosome aberrations, apoptosis and hematopoietic progenitor cell suppression. We hypothesized that genetic polymorphisms in genes involved in DNA DSB repair may modify...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mutation research
دوره 649 1-2 شماره
صفحات -
تاریخ انتشار 2008