A Direct Mapping of Max k-SAT and High Order Parity Checks to a Chimera Graph
نویسندگان
چکیده
We demonstrate a direct mapping of max k-SAT problems (and weighted max k-SAT) to a Chimera graph, which is the non-planar hardware graph of the devices built by D-Wave Systems Inc. We further show that this mapping can be used to map a similar class of maximum satisfiability problems where the clauses are replaced by parity checks over potentially large numbers of bits. The latter is of specific interest for applications in decoding for communication. We discuss an example in which the decoding of a turbo code, which has been demonstrated to perform near the Shannon limit, can be mapped to a Chimera graph. The weighted max k-SAT problem is the most general class of satisfiability problems, so our result effectively demonstrates how any satisfiability problem may be directly mapped to a Chimera graph. Our methods faithfully reproduce the low energy spectrum of the target problems, so therefore may also be used for maximum entropy inference.
منابع مشابه
The Steiner diameter of a graph
The Steiner distance of a graph, introduced by Chartrand, Oellermann, Tian and Zou in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ and $Ssubseteq V(G)$, the Steiner distance $d(S)$ among the vertices of $S$ is the minimum size among all connected subgraphs whose vertex sets contain $S$. Let $...
متن کاملEfficient Solution of Max-sat and Sat via Higher Order Boltzmann Machines
High order Boltzmann machines (HOBM) have been proposed some time ago, but few applications have been reported. SAT is the canonical NP-complete problem. MAX-SAT is a generalization of SAT in sense that its solution provides answers to SAT. In this paper we propose a mapping on the MAX-SAT problem, in the propositional calculus setting, into HOBM combinatorial optimization problem. The approxim...
متن کاملEdge-coloring Vertex-weightings of Graphs
Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...
متن کاملProviding a Simple Method for the Calculation of the Source and Target Reliabili- ty in a Communication Network (SAT)
The source and target reliability in SAT network is de- fined as the flawless transmission from the source node to all the other nodes. In some references, the SAT pro- cess has been followed between all the node pairs but it is very time-consuming in today’s widespread networks and involves many costs. In this article, a method has been proposed to compare the reliability in complex networks b...
متن کاملA note on the order graph of a group
The order graph of a group $G$, denoted by $Gamma^*(G)$, is a graph whose vertices are subgroups of $G$ and two distinct vertices $H$ and $K$ are adjacent if and only if $|H|big{|}|K|$ or $|K|big{|}|H|$. In this paper, we study the connectivity and diameter of this graph. Also we give a relation between the order graph and prime graph of a group.
متن کامل