The BEL information extraction workflow (BELIEF): evaluation in the BioCreative V BEL and IAT track
نویسندگان
چکیده
Network-based approaches have become extremely important in systems biology to achieve a better understanding of biological mechanisms. For network representation, the Biological Expression Language (BEL) is well designed to collate findings from the scientific literature into biological network models. To facilitate encoding and biocuration of such findings in BEL, a BEL Information Extraction Workflow (BELIEF) was developed. BELIEF provides a web-based curation interface, the BELIEF Dashboard, that incorporates text mining techniques to support the biocurator in the generation of BEL networks. The underlying UIMA-based text mining pipeline (BELIEF Pipeline) uses several named entity recognition processes and relationship extraction methods to detect concepts and BEL relationships in literature. The BELIEF Dashboard allows easy curation of the automatically generated BEL statements and their context annotations. Resulting BEL statements and their context annotations can be syntactically and semantically verified to ensure consistency in the BEL network. In summary, the workflow supports experts in different stages of systems biology network building. Based on the BioCreative V BEL track evaluation, we show that the BELIEF Pipeline automatically extracts relationships with an F-score of 36.4% and fully correct statements can be obtained with an F-score of 30.8%. Participation in the BioCreative V Interactive task (IAT) track with BELIEF revealed a systems usability scale (SUS) of 67. Considering the complexity of the task for new users-learning BEL, working with a completely new interface, and performing complex curation-a score so close to the overall SUS average highlights the usability of BELIEF.Database URL: BELIEF is available at http://www.scaiview.com/belief/.
منابع مشابه
Training and evaluation corpora for the extraction of causal relationships encoded in biological expression language (BEL)
Success in extracting biological relationships is mainly dependent on the complexity of the task as well as the availability of high-quality training data. Here, we describe the new corpora in the systems biology modeling language BEL for training and testing biological relationship extraction systems that we prepared for the BioCreative V BEL track. BEL was designed to capture relationships no...
متن کاملBioCreative V track 4: a shared task for the extraction of causal network information using the Biological Expression Language
Automatic extraction of biological network information is one of the most desired and most complex tasks in biological and medical text mining. Track 4 at BioCreative V attempts to approach this complexity using fragments of large-scale manually curated biological networks, represented in Biological Expression Language (BEL), as training and test data. BEL is an advanced knowledge representatio...
متن کاملTrack 4 Overview: Extraction of Causal Network Information in Biological Expression Language (BEL)
Automatic extraction of biological network information is one of the most desired and most complex tasks in biological text mining. The BioCreative track 4 provides training data and an evaluation environment for the extraction of causal relationships in Biological Expression Language (BEL). BEL is a modeling language that is easily editable by humans or by automatic systems and can express cau...
متن کاملIntegrating Coreference Resolution for BEL Statement Generation
We describe a pipeline system that automatically generates Biological Expression Language (BEL) statements from biomedical journal articles. The system incorporates existing systems for coreference resolution, event extraction, and BEL statement generation. While addressing the BEL track (Track 4) at BioCreative V (2015), we also investigate how incorporating coreference resolution might impact...
متن کاملCoreference resolution improves extraction of Biological Expression Language statements from texts
We describe a system that automatically extracts biological events from biomedical journal articles, and translates those events into Biological Expression Language (BEL) statements. The system incorporates existing text mining components for coreference resolution, biological event extraction and a previously formally untested strategy for BEL statement generation. Although addressing the BEL ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016