The Circadian Clock Protein Timeless Regulates Phagocytosis of Bacteria in Drosophila
نویسندگان
چکیده
Survival of bacterial infection is the result of complex host-pathogen interactions. An often-overlooked aspect of these interactions is the circadian state of the host. Previously, we demonstrated that Drosophila mutants lacking the circadian regulatory proteins Timeless (Tim) and Period (Per) are sensitive to infection by S. pneumoniae. Sensitivity to infection can be mediated either by changes in resistance (control of microbial load) or tolerance (endurance of the pathogenic effects of infection). Here we show that Tim regulates resistance against both S. pneumoniae and S. marcescens. We set out to characterize and identify the underlying mechanism of resistance that is circadian-regulated. Using S. pneumoniae, we found that resistance oscillates daily in adult wild-type flies and that these oscillations are absent in Tim mutants. Drosophila have at least three main resistance mechanisms to kill high levels of bacteria in their hemolymph: melanization, antimicrobial peptides, and phagocytosis. We found that melanization is not circadian-regulated. We further found that basal levels of AMP gene expression exhibit time-of-day oscillations but that these are Tim-independent; moreover, infection-induced AMP gene expression is not circadian-regulated. We then show that phagocytosis is circadian-regulated. Wild-type flies exhibit up-regulated phagocytic activity at night; Tim mutants have normal phagocytic activity during the day but lack this night-time peak. Tim appears to regulate an upstream event in phagocytosis, such as bacterial recognition or activation of phagocytic hemocytes. Interestingly, inhibition of phagocytosis in wild type flies results in survival kinetics similar to Tim mutants after infection with S. pneumoniae. Taken together, these results suggest that loss of circadian oscillation of a specific immune function (phagocytosis) can have significant effects on long-term survival of infection.
منابع مشابه
Post-translational regulation of the Drosophila circadian clock requires protein phosphatase 1 (PP1).
Phosphorylation is an important timekeeping mechanism in the circadian clock that has been closely studied at the level of the kinases involved but may also be tightly controlled by phosphatase action. Here we demonstrate a role for protein phosphatase 1 (PP1) in the regulation of the major timekeeping molecules in the Drosophila clock, TIMELESS (TIM) and PERIOD (PER). Flies with reduced PP1 ac...
متن کاملA molecular basis for natural selection at the timeless locus in Drosophila melanogaster.
Diapause is a protective response to unfavorable environments that results in a suspension of insect development and is most often associated with the onset of winter. The ls-tim mutation in the Drosophila melanogaster clock gene timeless has spread in Europe over the past 10,000 years, possibly because it enhances diapause. We show that the mutant allele attenuates the photosensitivity of the ...
متن کاملCircadian clock genes in Drosophila: recent developments.
Circadian rhythms provide a temporal framework to living organisms and are established in a majority of eukaryotes and in a few prokaryotes. The molecular mechanisms of circadian clock is constantly being investigated in Drosophila melanogaster. The core of the clock mechanism was described by a transcription-translation feedback loop model involving period (per), timeless (tim), dclock and cyc...
متن کاملTIMELESS-dependent positive and negative autoregulation in the Drosophila circadian clock.
The timeless protein (TIM) is a central component of the circadian pacemaker machinery of the fruitfly Drosophila melanogaster. Both TIM and its partner protein, the period protein PER, show robust circadian oscillations in mRNA and protein levels. Yet the role of TIM in the rhythm generation mechanism is largely unknown. To analyze TIM function, we constructed transgenic flies that carry a hea...
متن کاملPhosphorylation of PERIOD Is Influenced by Cycling Physical Associations of DOUBLE-TIME, PERIOD, and TIMELESS in the Drosophila Clock
The clock gene double-time (dbt) encodes an ortholog of casein kinase Iepsilon that promotes phosphorylation and turnover of the PERIOD protein. Whereas the period (per), timeless (tim), and dClock (dClk) genes of Drosophila each contribute cycling mRNA and protein to a circadian clock, dbt RNA and DBT protein are constitutively expressed. Robust circadian changes in DBT subcellular localizatio...
متن کامل