Labeling Dot-Cartesian and Dot-Lexicographic Product Graphs with a Condition at Distance Two

نویسندگان

  • Zhendong Shao
  • Igor Averbakh
  • Sandi Klavzar
چکیده

If d(x, y) denotes the distance between vertices x and y in a graph G, then an L(2, 1)-labeling of a graph G is a function f from vertices of G to nonnegative integers such that |f(x)−f(y)| ≥ 2 if d(x, y) = 1, and |f(x)−f(y)| ≥ 1 if d(x, y) = 2. Griggs and Yeh conjectured that for any graph with maximum degree ∆ ≥ 2, there is an L(2, 1)-labeling with all labels not greater than ∆. We prove that the conjecture holds for dot-Cartesian products and dot-lexicographic products of two graphs with possible minor exceptions in some special cases. The bounds obtained are in general much better than the ∆-bound.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs

In $1994,$ degree distance  of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of  multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the  multiplicative version of degree distance and multiplicative ver...

متن کامل

NUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS

In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...

متن کامل

Product version of reciprocal degree distance of composite graphs

A {it topological index} of a graph is a real number related to the graph; it does not depend on labeling or pictorial representation of a graph. In this paper, we present the upper bounds for the product version of reciprocal degree distance of the tensor product, join and strong product of two graphs in terms of other graph invariants including the Harary index and Zagreb indices.

متن کامل

Distance preserving graphs and graph products

If G is a graph then a subgraph H is isometric if, for every pair of vertices u, v of H, we have dH(u, v) = dG(u, v) where d is the distance function. We say a graph G is distance preserving (dp) if it has an isometric subgraph of every possible order up to the order of G. We give a necessary and sufficient condition for the lexicographic product of two graphs to be a dp graph. A graph G is seq...

متن کامل

Balanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations

A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. J.

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2016