A Value and Ambiguity-Based Ranking Method of Trapezoidal Intuitionistic Fuzzy Numbers and Application to Decision Making
نویسندگان
چکیده
The aim of this paper is to develop a method for ranking trapezoidal intuitionistic fuzzy numbers (TrIFNs) in the process of decision making in the intuitionistic fuzzy environment. Firstly, the concept of TrIFNs is introduced. Arithmetic operations and cut sets over TrIFNs are investigated. Then, the values and ambiguities of the membership degree and the nonmembership degree for TrIFNs are defined as well as the value-index and ambiguity-index. Finally, a value and ambiguity-based ranking method is developed and applied to solve multiattribute decision making problems in which the ratings of alternatives on attributes are expressed using TrIFNs. A numerical example is examined to demonstrate the implementation process and applicability of the method proposed in this paper. Furthermore, comparison analysis of the proposed method is conducted to show its advantages over other similar methods.
منابع مشابه
A Compromise Ratio Ranking Method of Triangular Intuitionistic Fuzzy Numbers\ and Its Application to MADM Problems
Triangular intuitionistic fuzzy numbers (TIFNs) is a special case of intuitionistic fuzzy (IF) set and the ranking of TIFNs is an important problem. The aim of this paper is to develop a new methodology for ranking TIFNs by using multiattribute decision making methods (MADM). In this methodology, the value and ambiguity indices of TIFNs may be considered as the attributes and the TIFNs in compa...
متن کاملTrapezoidal intuitionistic fuzzy prioritized aggregation operators and application to multi-attribute decision making
In some multi-attribute decision making (MADM) problems, various relationships among the decision attributes should be considered. This paper investigates the prioritization relationship of attributes in MADM with trapezoidal intuitionistic fuzzy numbers (TrIFNs). TrIFNs are a special intuitionistic fuzzy set on a real number set and have the better capability to model ill-known quantities. Fir...
متن کاملA Difference-index Based Ranking Method of Trapezoidal Intuitionistic Fuzzy Numbers and Application to Multiattribute Decision Making
The order relation of fuzzy number is important in decision making and optimization modeling, and ranking fuzzy numbers is difficult in nature. Ranking trapezoidal intuitionistic fuzzy numbers (TrIFNs) is more difficult due to the fact that the TrIFNs are a generalization of the fuzzy numbers. The aim of this paper is to develop a new methodology for ranking TrIFNs. We define the value-index an...
متن کاملPower harmonic aggregation operator with trapezoidal intuitionistic fuzzy numbers for solving MAGDM problems
Trapezoidal intuitionistic fuzzy numbers (TrIFNs) express abundant and flexible information in a suitable manner and are very useful to depict the decision information in the procedure of decision making. In this paper, some new aggregation operators, such as, trapezoidal intuitionistic fuzzy weighted power harmonic mean (TrIFWPHM) operator, trapezoidal intuitionistic fuzzy ordered weighted po...
متن کاملRanking method of trapezoidal intuitionistic fuzzy numbers
In this paper, considers the usage of intuitionistic fuzzy numbers in decision making. The values and ambiguities of the membership degree and the non-membership degree for trapezoidal intuitionistic fuzzy number are defined as well as the value-index and ambiguity-index. The proposed ranking method is easily implemented and has a natural interpretation. 2010 AMS Classification: 47S20, 03E72
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014