Searching for conical intersections of potential energy surfaces with the ONIOM method: application to previtamin D.

نویسندگان

  • Michael J Bearpark
  • Susan M Larkin
  • Thom Vreven
چکیده

We demonstrate that the ONIOM method can be used to optimize a conical intersection between the ground and first excited-state potential energy surfaces of previtamin D (precalciferol), with excitation localized in a small part of the molecule: the hexatriene chromophore. These calculations were up to 100 times faster with little loss of accuracy compared to a full non-ONIOM Target calculation. The most accurate ONIOM method combination was CASSCF/4-31G//ROHF/STO-3G(Triplet): in comparison to the Target (CASSCF/4-31G), bond lengths and angles in the hexatriene model region were calculated to within 0.02 A and 0.7 degrees , respectively, and the energy difference between the conical intersection and nearest associated S 1 minimum to within 0.5 kcal x mol (-1). All of the low-level methods selected produced accurate geometries, including the UFF molecular mechanics and AM1 semiempirical methods, suggesting a cheap and efficient way of initially optimizing conical intersections geometries. Furthermore, ONIOM allows for an assessment of the localization of excited states, providing some fundamental insight into the physical processes involved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Investigation of a Linear-Dendrite Copolymeric Nanoparticles As Drug Carriers: ONIOM Study

Linear–dendrite copolymers containing hyper branched poly(citric acid) and linear poly(ethylene glycol) blocks PCA–PEG–PCA are promising nonmaterial to use  in nanomedicine. To investigate their potential application in biological systems (especially for drug carries) ONIOM2 calculations were applied to study the nature of particular interactions between drug and the polymeric nanoparticle...

متن کامل

Topology of conical/surface intersections among five low-lying electronic states of CO2: multireference configuration interaction calculations.

Multi-reference configuration interaction with single and double excitation method has been utilized to calculate the potential energy surfaces of the five low-lying electronic states (1)A1, (1)A2, (3)A2, (1)B2, and (3)B2 of carbon dioxide molecule. Topology of intersections among these five states has been fully analyzed and is associated with double-well potential energy structure for every e...

متن کامل

Coupled diabatic potential energy surfaces for studying the nonadiabatic dynamics at conical intersections in angular resolved photodetachment simulations of OHF--->OHF+e-.

An energy-based method is proposed for the diabatization of the OH(2Pi)+F(2P)-->O(3P)+HF(1Sigma+) reaction. It is demonstrated that the diabatic representation obtained is regularized, i.e., the residual derivative couplings do not present singularities at the conical intersections appearing along the reaction path. This method only requires the knowledge of the 1,2 3A" and 1 3A' eigenvalues an...

متن کامل

Three-state conical intersections in cytosine and pyrimidinone bases.

Three-state conical intersections have been located and characterized for cytosine and its analog 5-methyl-2-pyrimidinone using multireference configuration-interaction ab initio methods. The potential energy surfaces for each base contain three different three-state intersections: two different S(0)-S(1)-S(2) intersections (gs/pi pi(*)/n(N)pi(*) and gs/pi pi(*)/n(O)pi(*)) and an S(1)-S(2)-S(3)...

متن کامل

Vibrational conical intersections as a mechanism of ultrafast vibrational relaxation.

Presenting true crossings of adiabatic potential energy surfaces, conical intersections are a paradigm of ultrafast and efficient electronic relaxation dynamics. The same mechanism is shown to apply also for vibrational conical intersections, which may occur when two high-frequency modes (such as OH stretch vibrations) are coupled to low-frequency modes (such as hydrogen bonding modes). By deri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 112 31  شماره 

صفحات  -

تاریخ انتشار 2008