Rapamycin protects dopaminergic neurons against rotenone-induced cell death in primary mesencephalic cell culture.
نویسندگان
چکیده
INTRODUCTION Parkinson's disease is the most common movement disorder, characterized by a progressive and extensive loss of dopaminergic neurons in the substantia nigra pars compacta and their terminals in the striatum. So far, only symptomatic treatment is available, and no cure or disease-modifying drugs exist. The present study was designed to investigate the neuroprotective effect of rapamycin, an autophagy inducer, on dopaminergic neurons against rotenone-induced cell death in primary mesencephalic cell culture. MATERIAL AND METHODS Primary mesencephalic cell cultures were prepared from embryonic mouse mesencephala (OFI/SPF, Vienna, Austria) at gestation day 14. Four sets of cultures were treated as follows: one was run as an untreated control, a second one was treated with 20 nM rotenone on the 10th day in vitro (DIV) for 48 h, a third one was co-treated with 20 nM rotenone and rapamycin (1, 10, 100, 1000 nM) on the 10th DIV for 48 h, and a fourth one was treated with rapamycin alone (1, 10, 100, 1000 nM) on the 10th DIV for 48 h. On the 12th DIV, cultures were subjected to immunohistochemistry against tyrosine hydroxylase and to fluorescence staining using LysoTracker Deep Red, JC-1 and DAPI stains. RESULTS Exposure of such cultures to 20 nM rotenone on the 10th DIV for 48 h reduced the number of dopaminergic neurons by 41% and increased the release of lactate dehydrogenase (LDH) by 178% above untreated controls. Rapamycin (1, 10, 100, 1000 nM) added together with rotenone from the 10th to 12th DIV spared dopaminergic neurons by 17% and reduced the release of LDH by 64% at the concentration of 100 nM compared to rotenone-treated cultures. Activation of an autophagic process by rapamycin was demonstrated by LysoTracker Deep Red fluorescent dye, as indicated by a shift to increased red fluorescence. Rapamycin also significantly elevated the mitochondrial membrane potential (Δψm), as shown by an increase of the red:green fluorescence ratio of JC-1. Increased apoptotic cell death due to rotenone was lowered by rapamycin, as shown by the blue-fluorescent DAPI nucleic acid stain. CONCLUSIONS Our study indicates for the first time that rapamycin, known as an autophagy inducer, protected dopaminergic neurons against rotenone-induced cell death in primary mesencephalic cell culture.
منابع مشابه
Cabergoline protects dopaminergic neurons against rotenone-induced cell death in primary mesencephalic cell culture.
In the present study, primary mesencephalic cell cultures prepared from embryonic mouse mesencephala were used to investigate the neuroprotective effect of cabergoline, an ergoline D2 receptor agonist, against the pesticide and neurotoxin rotenone relevant to Parkinson disease (PD). Treatment of cultures with cabergoline alone significantly increased the number of tyrosine hydroxylase immunorea...
متن کاملNeuroprotective effect of rotigotine against complex I inhibitors, MPP⁺ and rotenone, in primary mesencephalic cell culture.
INTRODUCTION Dopamine agonists are suggested to be more efficacious in treating Parkinson's disease (PD) as they have neuroprotective properties in addition to their receptor-related actions. AIM OF THE STUDY The present study was designed to investigate the neuroprotective effects of rotigotine, a D3/D2/D1 dopamine receptor agonist, against the two powerful complex I inhibitors, 1-methyl-4-p...
متن کاملNeurobiology of Disease Basic Fibroblast Growth Factor Protects against Rotenone- Induced Dopaminergic Cell Death through Activation of Extracellular Signal-Regulated Kinases 1/2 and Phosphatidylinositol-3 Kinase Pathways
Administration of rotenone to rats reproduces many features of Parkinson’s disease, including dopaminergic neuron degeneration, and provides a useful model to study the pathogenesis of Parkinson’s disease. However, the cell death mechanisms induced by rotenone and potential neuroprotective mechanisms against rotenone are not well defined. Here we report that rotenone-induced apoptosis in human ...
متن کاملGanoderma Lucidum polysaccharides protect against MPP(+) and rotenone-induced apoptosis in primary dopaminergic cell cultures through inhibiting oxidative stress.
Oxidative stress plays a pivotal role in the progressive neurodegeneration in Parkinson's disease (PD) which is responsible for disabling motor abnormalities in more than 6.5 million people worldwide. Polysaccharides are the main active constituents from Ganoderma lucidum which is characterized with anti-oxidant, antitumor and immunostimulant properties. In the present study, primary dopaminerg...
متن کاملNeuroprotective role of thymoquinone against 1-methyl-4-phenylpyridinium-induced dopaminergic cell death in primary mesencephalic cell culture
OBJECTIVE To investigate potential mechanisms mediating the neuroprotective effect of thymoquinone (TQ) on dopaminergic neurons. METHODS This study was conducted in the Chemistry and Biochemistry Institute, University of Veterinary Medicine, Vienna, Austria between June and August 2013. Primary cultures were prepared from embryonic mouse mesencephala (OFI/SPF) at gestation day 14. Four sets o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Folia neuropathologica
دوره 53 3 شماره
صفحات -
تاریخ انتشار 2015