Engineering vessel-like networks within multicellular fibrin-based constructs.

نویسندگان

  • Ayelet Lesman
  • Jacob Koffler
  • Roee Atlas
  • Yaron J Blinder
  • Zvi Kam
  • Shulamit Levenberg
چکیده

Sufficient vascularization in engineered tissues can be achieved through coordinated application of improved biomaterial systems with proper cell types. In this study, we employed 3D fibrin gels alone or in combination with the synthetic poly(l-lactic acid) (PLLA)/polylactic-glycolic acid (PLGA) sponges to support in-vitro construct vascularization and to enhance neovascularization upon implantation. Two multicellular assays were embedded in these constructs: (a) co-culture of endothelial (EC) and fibroblast cells, and (b) a tri-culture combination of ECs, fibroblasts and tissue specific skeletal myoblast cells. In-vitro vessel network formation was examined under advanced confocal microscopy in various time points from cell seeding. Vessel network maturity levels and morphology were found to be highly regulated by fibrinogen concentrations in-vitro. Combination of PLLA/PLGA sponges with fibrin matrices provided added mechanical strength and featured highly mature vessels-like networks. Implantation studies revealed that the implanted ECs developed into 3D interconnected vessel-like networks in-vivo. The PLLA/PLGA scaffold proved to be a key stimulator of neovascularization and perfusion of implanted grafts. Our findings demonstrate that complex biomaterial platform involving fibrin and PLLA/PLGA synthetic scaffold provide a way to enhancing vascularization in-vitro and in-vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing scaffold-free and fibrin-based adipose-derived stromal cell constructs for adipose tissue engineering: an in vitro and in vivo study.

Success of adipose tissue engineering for soft tissue repair has been limited by insufficient adipogenic differentiation, an unfavorable host response, and insufficient vascularization. In this study, we examined how scaffold-free spheroid and fibrin-based environments impact these parameters in human adipose-derived stromal cell (ASC)-based adipose constructs. ASCs were differentiated in sphe...

متن کامل

Fibrin degradation enhances vascular smooth muscle cell proliferation and matrix deposition in fibrin-based tissue constructs fabricated in vitro.

Completely biological tissue replacements can be fabricated by entrapping cells in a molded fibrin gel. Over time, the fibrin is degraded and replaced with cell-produced extracellular matrix. However, the relationship between fibrin degradation and matrix deposition has not been elucidated. We developed techniques to quantify fibrin degradation products (FDP) and examine plasmin activity in the...

متن کامل

Endothelial progenitor cells are integrated in newly formed capillaries and alter adjacent fibrovascular tissue after subcutaneous implantation in a fibrin matrix

Vascularization of bioartificial matrices is crucial for successful tissue engineering. Endothelial progenitor cells (EPC) have shown vascularization potential in ischemic conditions and may also support blood vessel formation in tissue-engineered matrices. The aim of our study was to investigate the impact of a well-characterized murine embryonal EPC line (T17b-EPC) on vascularization and fibr...

متن کامل

Diffusion limits of an in vitro thick prevascularized tissue.

Although tissue engineering promises to replace or restore lost function to nearly every tissue in the body, successful applications are currently limited to tissue less than 2 mm in thickness. in vivo capillary networks deliver oxygen and nutrients to thicker (> 2 mm) tissues, suggesting that introduction of a preformed in vitro vascular network may be a useful strategy for engineered tissues....

متن کامل

Enhancing the Three-Dimensional Structure of Adherent Gingival Fibroblasts and Spheroids via a Fibrous Protein-Based Hydrogel Cover.

Tissue engineering-based therapies rely on the delivery of monolayered fibroblasts on two-dimensional polystyrene-coated and extracellular matrix (ECM) surfaces to regenerate connective tissues. However, this approach may fail to mimic their three-dimensional (3D) native architecture and function. We hypothesize that ECM fibrous proteins, which direct the migration of cells in vivo, may attach ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 32 31  شماره 

صفحات  -

تاریخ انتشار 2011