Lattice sub-tilings and frames in LCA groups

نویسندگان

  • Davide Barbieri
  • Eugenio Hernández
  • Azita Mayeli
چکیده

Given a lattice Λ in a locally compact abelian group G and a measurable subset Ω with finite and positive measure, then the set of characters associated to the dual lattice form a frame for L2(Ω) if and only if the distinct translates by Λ of Ω have almost empty intersections. Some consequences of this results are the wellknown Fuglede theorem for lattices, as well as a simple characterization for frames of modulates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . C A ] 9 O ct 2 01 7 FRAMES OF EXPONENTIALS AND SUB – MULTITILES IN LCA GROUPS

In this note we investigate the existence of frames of exponentials for L(Ω) in the setting of LCA groups. Our main result shows that sub–multitiling properties of Ω ⊂ Ĝ with respect to a uniform lattice Γ of Ĝ guarantee the existence of a frame of exponentials with frequencies in a finite number of translates of the annihilator of Γ. We also prove the converse of this result and provide condit...

متن کامل

Calderón-type inequalities for affine frames

Abstract We prove sharp upper and lower bounds for generalized Calderón’s sums associated to frames on LCA groups generated by affine actions of cocompact subgroup translations and general measurable families of automorphisms. The proof makes use of techniques of analysis on metric spaces, and relies on a counting estimate of lattice points inside metric balls. We will deduce as special cases C...

متن کامل

Uniform Subadditive Ergodic Theorem on Aperiodic Linearly Repetitve Tilings and Applications

The paper is concerned with aperiodic linearly repetitive tilings. For such tilings we establish a weak form of self-similarity that allows us to prove general (sub)additive ergodic theorems. Finally, we provide applications to the study of lattice gas models.

متن کامل

Linear Repetitivity, I. Uniform Subadditive Ergodic Theorems and Applications

This paper is concerned with the concept of linear repetitivity in the theory of tilings. We prove a general uniform subadditive ergodic theorem for linearly repetitive tilings. This theorem unifies and extends various known (sub)additive ergodic theorems on tilings. The results of this paper can be applied in the study of both random operators and lattice gas models on tilings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016