ITS2 Secondary Structure Improves Discrimination between Medicinal “Mu Tong” Species when Using DNA Barcoding
نویسندگان
چکیده
DNA barcoding is a promising species identification method, but it has proved difficult to find a standardized DNA marker in plant. Although the ITS/ITS2 RNA transcript has been proposed as the core barcode for seed plants, it has been criticized for being too conserved in some species to provide enough information or too variable in some species to align it within the different taxa ranks. We selected 30 individuals, representing 16 species and four families, to explore whether ITS2 can successfully resolve species in terms of secondary structure. Secondary structure was predicted using Mfold software and sequence-structure was aligned by MARNA. RNAstat software transformed the secondary structures into 28 symbol code data for maximum parsimony (MP) analysis. The results showed that the ITS2 structures in our samples had a common four-helix folding type with some shared motifs. This conserved structure facilitated the alignment of ambiguous sequences from divergent families. The structure alignment yielded a MP tree, in which most topological relationships were congruent with the tree constructed using nucleotide sequence data. When the data was combined, we obtained a well-resolved and highly supported phylogeny, in which individuals of a same species were clustered together into a monophyletic group. As a result, the different species that are often referred to as the herb "Mu tong" were successfully identified using short fragments of 250 bp ITS2 sequences, together with their secondary structure. Thus our analysis strengthens the potential of ITS2 as a promising DNA barcode because it incorporates valuable secondary structure information that will help improve discrimination between species.
منابع مشابه
A tiered barcode authentication tool to differentiate medicinal Cassia species in India.
DNA barcoding is a desirable tool for medicinal product authentication. DNA barcoding is a method for species identification using short DNA sequences that are conserved within species, but variable between species. Unlike animals, there is no single universal DNA barcode locus for plants. Coding markers, matK and rbcL, and noncoding markers, trnH-psbA (chloroplast) and ITS2 (nuclear), have bee...
متن کاملApplication of the ITS2 Region for Barcoding Medicinal Plants of Selaginellaceae in Pteridophyta
BACKGROUND Selaginellaceae is a family of nonseed plants with special evolutionary significance. Plants of the family Selaginellaceae are similarly shaped and easily confused, complicating identification via traditional methods. This study explored, for the first time, the use of the DNA barcode ITS2 to identify medicinal plants of the Selaginellaceae family. METHODOLOGY/PRINCIPAL FINDINGS In...
متن کاملApplication of the Ribosomal DNA ITS2 Region of Physalis (Solanaceae): DNA Barcoding and Phylogenetic Study
Recently, commercial interest in Physalis species has grown worldwide due to their high nutritional value, edible fruit, and potential medicinal properties. However, many Physalis species have similar shapes and are easily confused, and consequently the phylogenetic relationships between Physalis species are poorly understood. This hinders their safe utilization and genetic resource conservatio...
متن کاملValidation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species
BACKGROUND The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL+matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and t...
متن کاملAssessing universality of DNA barcoding in geographically isolated selected desert medicinal species of Fabaceae and Poaceae
In pursuit of developing fast and accurate species-level molecular identification methods, we tested six DNA barcodes, namely ITS2, matK, rbcLa, ITS2+matK, ITS2+rbcLa, matK+rbcLa and ITS2+matK+rbcLa, for their capacity to identify frequently consumed but geographically isolated medicinal species of Fabaceae and Poaceae indigenous to the desert of Cholistan. Data were analysed by BLASTn sequence...
متن کامل