Silver oxide nanocrystals anchored on titanate nanotubes and nanofibers: promising candidates for entrapment of radioactive iodine anions.
نویسندگان
چکیده
Iodine radioisotopes are released into the environment by the nuclear industry and medical research institutions using radioactive materials. The (129)I(-) anion is one of the more mobile radioactive species due to a long half-life, and it is a great challenge to design long-term management solutions for such radioactive waste. In this study, a new adsorbent structure with the potential to efficiently remove radioactive iodine anions (I(-)) from water is devised: silver oxide (Ag2O) nanocrystals firmly anchored on the surface of titanate nanotubes and nanofibers via coherent interfaces between Ag2O and titanate phases. I(-) anions in fluids can easily access the Ag2O nanocrystals and be efficiently trapped by forming AgI precipitate that firmly attaches to the adsorbent. Due to their one-dimensional morphology, the new adsorbents can be readily dispersed in liquids and easily separated after purification; and the adsorption beds loaded with the adsorbents can permit high flux. This significantly enhances the adsorption efficiency and reduces the separation costs. The proposed structure reveals a new direction in developing efficient adsorbents for the removal of radioactive anions from wastewater.
منابع مشابه
Highly Stable Nanocontainer of APTES-Anchored Layered Titanate Nanosheet for Reliable Protection/Recovery of Nucleic Acid.
A universal technology for the encapsulative protection of unstable anionic species by highly stable layered metal oxide has been developed via the surface modification of a metal oxide nanosheet. The surface anchoring of (3-aminopropyl)triethoxysilane (APTES) on exfoliated titanate nanosheet yields a novel cationic metal oxide nanosheet, which can be universally used for the hybridization with...
متن کاملAdsorption of 137Cs on titanate nanostructures
Various types of sodium and potassium titanate nanostructures (nanotubes, nanofibers, nanoribbons, nanwires) were synthesized and characterized by X-ray diffraction, SEM and TEM, as well BET and BJH methods. Adsorption of radiotracer 137Cs+ ions from aqueous solutions on synthesized titanate nanostructures was investigated in batch technique as a function of contact time, concentration of sodiu...
متن کاملGrowth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes.
A vertically aligned nanotube array of titanium oxide was fabricated on the surface of titanium substrate by anodization. The nanotubes were then treated with NaOH solution to make them bioactive, and to induce growth of hydroxyapatite (bone-like calcium phosphate) in a simulated body fluid. It is shown that the presence of TiO2 nanotubes induces the growth of a "nano-inspired nanostructure", i...
متن کاملIn situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation
A silver nanoparticle (AgNP)-filled hydrogen titanate nanotube layer was synthesized in situ on a metallic titanium substrate. In the synthesis approach, a layer of sodium titanate nanotubes is first prepared on the titanium surface by using a hydrothermal method. Silver nitrate solution is absorbed into the nanotube channels by immersing a dried nanotube layer in silver nitrate solution. Final...
متن کاملOptimized antimicrobial and antiproliferative activities of titanate nanofibers containing silver
Titanate nanofibers containing silver have been demonstrated through the experiments reported herein to have effective antifungal and antiproliferative activities in the presence of UV light. The titanate nanofibers containing silver can be fabricated by means of ion exchange followed by a topochemical process in an environment suitable for reductive reactions. Excellent antibacterial, antifung...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 5 22 شماره
صفحات -
تاریخ انتشار 2013