Hydrogen Abstraction from a Diamond Surface. Ab Initio Quantum Chemical Study with Constrained Isobutane as a Model
نویسندگان
چکیده
Abstraction of terminal hydrogens on a diamond I1 1 I } surface by atomic hydrogen has been offered as the possible rate-determining elementary step in the mechanism of low-pressure diamond growth by chemical vapor deposition. We use ab initio multiconfiguration self-consistent-field methods to estimate the activation energy for this abstraction reaction. We do this by first computing features of the potential energy surface for hydrogen abstraction from gas-phase isobutane and then computing features of the potential energy surface for this same system imposing constraints that mimic those found in a diamond lattice. Our results indicate that, although 5.4 kcal/mol of the CH bond energy in isobutane is attributable to structural relaxation of the radical, most of this radical relaxation energy (4.5 kcal/mol of it) is realized even with geometric constraints similar to those in a diamond lattice. We therefore predict bonds to a diamond surface to be only about 1 kcal/mol stronger than corresponding bonds to a gas-phase tertiary-carbon atom. The effect of the geometrical constraints on the activation energy for the hydrogen abstraction reaction is even smaller: all but 0.2 kcal/mol of the gas-phase radical relaxation energy at the transition state is realized even with the imposition of lattice-type constraints. Our results therefore support the use in kinetic modeling or molecular dynamics simulations of activation energies taken from analogous gas-phase hydrocarbon reactions with little or no adjustment.
منابع مشابه
Theoretical studies of a hydrogen abstraction tool for nanotechnology
Processes that use mechanical positioning of reactive species to control chemical reactions by either providing activation energy or selecting between alternative reaction pathways will allow us to construct a wide range of complex molecular structures. An example of such a process is the abstraction of hydrogen from diamond surfaces by a radical species attached to a mechanical positioning dev...
متن کاملHigh-level ab initio studies of hydrogen abstraction from prototype hydrocarbon systems.
Symmetric and nonsymmetric hydrogen abstraction reactions are studied using state-of-the-art ab initio electronic structure methods. Second-order Møller-Plesset perturbation theory (MP2) and the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] methods with large correlation consistent basis sets (cc-pVXZ, where X = D,T,Q) are used in determining the transition-state geometri...
متن کاملAb Initio Theoretical Studies on the Kinetics of the Hydrogen Abstraction Reaction of Hydroxyl Radical with CH3CH2OCF2CHF2 (HFE-374pc2)
The hydrogen abstraction reaction of OH radical with CH3CH2OCF2CHF2 (HFE-374pc2) is investigated theoretically by semi-classical transition state theory. The stationary points on the potential energy surface of the reaction are located by using KMLYP density functional method along with 6-311++G(d,p) basis set. Vibrational anharmonicity coefficients, ...
متن کاملAb Initio Quantum Chemical Studies of 15N and 13C NMR Shielding Tensors in Serine and Complexes of Serine- nH2O: Investigation on Strength of the CαH…O Hydrogen bonding in the Amino Acid Residue.
In this paper, the hydrogen bonding (HB) effects on the NMR chemical shifts of selected atoms in serineand serine-nH2O complexes (from one to ten water molecules) have been investigated with quantummechanical calculations of the 15N and 13C tensors. Interaction with water molecules causes importantchanges in geometry and electronic structure of serine.For the compound studied, the most importan...
متن کاملThe effect of Environmental exposure to some chemical solvents on DPPC as important component of lung surfactant: an ab initio study
One of the main components of lung alveoli is surfactant. DPPC (Dipalmitolphosphatidylcholine) is thepredominant lipid component in lung surfactant that is responsible for lowering surface tension in alveoli in thisarticle. We used a very approximate model with computational method of Ab initio to describe the interactionsbetween DPPC as important component of lung surfactant and some chemical ...
متن کامل