Validation of fluence‐based 3D IMRT dose reconstruction on a heterogeneous anthropomorphic phantom using Monte Carlo simulation
نویسندگان
چکیده
In this study, we evaluated the performance of a three-dimensional (3D) dose verification system, COMPASS version 3, which has a dedicated beam models and dose calculation engine. It was possible to reconstruct the 3D dose distributions in patient anatomy based on the measured fluence using the MatriXX 2D array. The COMPASS system was compared with Monte Carlo simulation (MC), glass rod dosimeter (GRD), and 3DVH, using an anthropomorphic phantom for intensity-modulated radiation therapy (IMRT) dose verification in clinical neck cases. The GRD measurements agreed with the MC within 5% at most measurement points. In addition, most points for COMPASS and 3DVH also agreed with the MC within 5%. The COMPASS system showed better results than 3DVH for dose profiles due to individual adjustments, such as beam modeling for each linac. Regarding the dose-volume histograms, there were no large differences between MC, analytical anisotropic algorithm (AAA) in Eclipse treatment planning system (TPS), 3DVH, and the COMPASS system. However, AAA underestimated the dose to the clinical target volume and Rt-Parotid slightly. This is because AAA has some problems with dose calculation accuracy. Our results indicated that the COMPASS system offers highly accurate 3D dose calculation for clinical IMRT quality assurance. Also, the COMPASS system will be useful as a commissioning tool in routine clinical practice for TPS.
منابع مشابه
Monte Carlo Simulation of Prostate Intensity Modulated Radiotherapy Using PRIMO Software: A Feasibility Study
Introduction: Nowadays Intensity Modulated Radiotherapy (IMRT) is a common method for treating prostate cancers. Must of the Monte Carlo software cannot simulate the IMRT procedures due to inability of these soft wares to simulate the multi leaf collimator (MLC) positions or movements. A new user-friendly software based on the PENELOPE Monte Carlo code named PRIMO was published...
متن کاملA Generalized Strategy for 3D Dose Verification of IMRT/VMAT Using EPID-measured Transit Images
The aim in this study is to develop a generalized strategy for 3D dose verification of IMRT and VMAT planes using EPID transit images in combination with Monte Carlo (MC) simulations. An EPID-based dosimetric verification procedure was developed to convert EPID-measured transit images into 2D exit photon fluence by de-convoluting with the MC-simulated EPID response kernels. The present scatter ...
متن کاملEvaluation of a fast method of EPID-based dosimetry for IMRT and Comparison with 3D EPID-based dosimetry system using conventional two- and three-dimensional detectors for VMAT
Introduction: Electronic portal imaging devices (EPIDs) could potentially be useful for intensity-modulated radiation therapy (IMRT) and VMAT QA. The data density, high resolution, large active area, and efficiency of the MV EPID make it an attractive option. However, EPIDs were designed as imaging devices, not dosimeters, and as a result they do not inherently measure dose in ...
متن کاملA method for range calculation of proton in liquid water: Validation study using Monte Carlo method and NIST data
Introduction: The main advantage of using ion beams over photons in radiotherapy is due to their inverse depth-dose profiles, allowing higher doses to tumors, while better sparing normal tissues. When calculating dose distributions with ion beams, one crucial point is the uncertainty of the Bragg-peak range. Recently great effort is devoted to enhance the accuracy of the comput...
متن کاملAn Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method
Introduction: An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. Materials and Methods: A program was written for parallel runnin...
متن کامل