MECP2 is highly mutated in X-linked mental retardation.

نویسندگان

  • P Couvert
  • T Bienvenu
  • C Aquaviva
  • K Poirier
  • C Moraine
  • C Gendrot
  • A Verloes
  • C Andrès
  • A C Le Fevre
  • I Souville
  • J Steffann
  • V des Portes
  • H H Ropers
  • H G Yntema
  • J P Fryns
  • S Briault
  • J Chelly
  • B Cherif
چکیده

Following the recent discovery that the methyl-CpG binding protein 2 (MECP2) gene located on Xq28 is involved in Rett syndrome (RTT), a wild spectrum of phenotypes, including mental handicap, has been shown to be associated with mutations in MECP2. These findings, with the compelling genetic evidence suggesting the presence in Xq28 of additional genes besides RabGDI1 and FMR2 involved in non-specific X-linked mental retardation (MRX), prompted us to investigate MECP2 in MRX families. Two novel mutations, not found in RTT, were identified. The first mutation, an E137G, was identified in the MRX16 family, and the second, R167W, was identified in a new mental retardation (MR) family shown to be linked to Xq28. In view of these data, we screened MECP2 in a cohort of 185 patients found negative for the expansions across the FRAXA CGG repeat and reported the identification of mutations in four sporadic cases of MR. One of the mutations, A140V, which we found in two patients, has been described previously, whereas the two others, P399L and R453Q, are novel mutations. In addition to the results demonstrating the involvement of MECP2 in MRX, this study shows that the frequency of mutations in MECP2 in the mentally retarded population screened for the fragile X syndrome is comparable to the frequency of the CGG expansions in FMR1. Therefore, implementation of systematic screening of MECP2 in MR patients should result in significant progress in the field of molecular diagnosis and genetic counseling of mental handicap.

منابع مشابه

Interaction between chromatin proteins MECP2 and ATRX is disrupted by mutations that cause inherited mental retardation.

Mutations in the human methyl-CpG-binding protein gene MECP2 cause the neurological disorder Rett syndrome and some cases of X-linked mental retardation (XLMR). We report that MeCP2 interacts with ATRX, a SWI2/SNF2 DNA helicase/ATPase that is mutated in ATRX syndrome (alpha-thalassemia/mental retardation, X-linked). MeCP2 can recruit the helicase domain of ATRX to heterochromatic foci in living...

متن کامل

Identification of cis-regulatory elements for MECP2 expression.

Rett syndrome (RTT) is an X-linked dominant disabling neurodevelopmental disorder caused by loss of function mutations in the MECP2 gene, located at Xq28, which encodes a multifunctional protein. MECP2 expression is regulated in a developmental stage and cell-type-specific manner. The need for tightly controlled MeCP2 levels in brain is strongly suggested by neurologically abnormal phenotypes o...

متن کامل

MECP2 gene mutations in non-syndromic X-linked mental retardation: phenotype-genotype correlation.

Non-syndromic X-linked mental retardation (MRX) is a frequent cause of inherited mental retardation. It is a heterogeneous condition in which the first 12 genes discovered to date explain no more than 15% of the MRX situations ascertained by recurrence in multiplex families. In Rett syndrome (RTT), an X-linked dominant condition mostly sporadic and usually lethal in males, most affected females...

متن کامل

MeCP2-dependent repression of an imprinted miR-184 released by depolarization.

Both fragile X syndrome and Rett syndrome are commonly associated with autism spectrum disorders and involve defects in synaptic plasticity. MicroRNA is implicated in synaptic plasticity because fragile X mental retardation protein was recently linked to the microRNA pathway. DNA methylation is also involved in synaptic plasticity since methyl CpG-binding protein 2 (MeCP2) is mutated in patient...

متن کامل

The phenotypic consequences of MECP2 mutations extend beyond Rett syndrome.

Although MECP2 was initially identified as the causative gene in classic Rett syndrome (RTT), the gene has now been implicated in several phenotypes that extend well beyond the clinically defined disorder. MECP2 mutations have been found in people with various disorders, including neonatal onset encephalopathy, X-linked recessive mental retardation (MRX), classic and atypical RTT, autism, and A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Human molecular genetics

دوره 10 9  شماره 

صفحات  -

تاریخ انتشار 2001