Crystallographic and fluorescence studies of the interaction of haloalkane dehalogenase with halide ions. Studies with halide compounds reveal a halide binding site in the active site.
نویسندگان
چکیده
Haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 catalyzes the conversion of 1,2-dichloroethane to 2-chloroethanol and chloride without use of oxygen or cofactors. The active site is situated in an internal cavity, which is accessible from the solvent, even in the crystal. Crystal structures of the dehalogenase enzyme complexed with iodoacetamide, chloroacetamide, iodide, and chloride at pH 6.2 and 8.2 revealed a halide binding site between the ring NH's of two tryptophan residues, Trp-125 and Trp-175, located in the active site. The halide ion lies on the intersection of the planes of the rings of the tryptophans. The binding of iodide and chloride to haloalkane dehalogenase caused a strong decrease in protein fluorescence. The decrease could be fitted to a modified form of the Stern-Volmer equation, indicating the presence of fluorophors of different accessibilities. Halide binding was much stronger at pH 6.0 than at pH 8.2. Assuming ligand binding to Trp-125 and Trp-175 as the sole cause of fluorescence quenching, dissociation constants at pH 6.0 with chloride and iodide were calculated to be 0.49 +/- 0.04 and 0.074 +/- 0.007 mM, respectively. Detailed structural investigation showed that the halide binding site probably stabilizes the halide product as well as the negatively charged transition state occurring during the formation of the covalent intermediate.
منابع مشابه
Thermodynamic analysis of halide binding to haloalkane dehalogenase suggests the occurrence of large conformational changes.
Haloalkane dehalogenase (DhlA) hydrolyzes short-chain haloalkanes to produce the corresponding alcohols and halide ions. Release of the halide ion from the active-site cavity can proceed via a two-step and a three-step route, which both contain slow enzyme isomerization steps. Thermodynamic analysis of bromide binding and release showed that the slow unimolecular isomerization steps in the thre...
متن کاملReplacement of tryptophan residues in haloalkane dehalogenase reduces halide binding and catalytic activity.
Haloalkane dehalogenase catalyzes the hydrolytic cleavage of carbon-halogen bonds in short-chain haloalkanes. Two tryptophan residues of the enzyme (Trp125 and Trp175) form a halide-binding site in the active-site cavity, and were proposed to play a role in catalysis. The function of these residues was studied by replacing Trp125 with phenylalanine, glutamine or arginine and Trp175 by glutamine...
متن کاملKinetics of halide release of haloalkane dehalogenase: evidence for a slow conformational change.
Haloalkane dehalogenase converts haloalkanes to their corresponding alcohols and halides. The reaction mechanism involves the formation of a covalent alkyl-enzyme complex which is hydrolyzed by water. The active site is a hydrophobic cavity buried between the main domain and the cap domain of the enzyme. The enzyme has a broad substrate specificity, but the kcat values of the enzyme for the bes...
متن کاملInfluence of mutations of Val226 on the catalytic rate of haloalkane dehalogenase.
Haloalkane dehalogenase converts haloalkanes to their corresponding alcohols. The 3D structure, reaction mechanism and kinetic mechanism have been studied. The steady state k(cat) with 1,2-dichloroethane and 1,2-dibromoethane is limited mainly by the rate of release of the halide ion from the buried active-site cavity. During catalysis, the halogen that is cleaved off (Cl alpha) from 1,2-dichlo...
متن کاملSelective Binding of Cyclic Nanopeptide with Halides and Ion Pairs; a DFT-D3 Study
In this article, theoretical studies on the selective complexation of the halide ions (F¯, Cl¯ and Br¯) and ion pairs (Na+F¯, Na+Cl¯ and Na+Br¯) with the cyclic nano-hexapeptide (CP) composed of L-proline have been performed in the gas phase. In order to calculate the dispersion interaction energies of the CP and ions, DFT-D3 calculations at the M05-2X-D3/6-31G(d) level was employed. Based on t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 32 35 شماره
صفحات -
تاریخ انتشار 1993