Nanotube Biosensor Arrays for Detection of Molecular Surface Markers in Breast Cancer Cells

نویسندگان

  • V. Velasco
  • E. Wickstrom
  • B. Panchapakesan
چکیده

Recent reports have shown that nanoscale electronic devices can be used to detect a change in electrical properties when receptor proteins bind to their corresponding antibodies functionalized on the surface of the device, in extracts from as few as ten lysed tumor cells. Here we report a single nanotube field effect transistor arrays, functionalized with IGF1R-specific and Her2-specific antibodies and which exhibits selective sensing of live, intact MCF7 and BT474 human breast cancer cells in human blood. We postulate that the free energy change due to multiple simultaneous cellantibody binding events exerted stress along the nanotube surface, decreasing its electrical conductivity due to an increase in band gap. Because the free energy change upon cell-antibody binding, the stress exerted on the nanotube, and the change in conductivity are specific to a specific antigenantibody interaction, these properties might be used as a fingerprint for molecular sensing of circulating cancer cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Carbon Nanotube Field-effect Transistor Arrays for Detection of Her2 Overexpression in Breast Cancer

Title of Document: DEVELOPMENT OF CARBON NANOTUBE FIELD-EFFECT TRANSISTOR ARRAYS FOR DETECTION OF HER2 OVEREXPRESSION IN BREAST CANCER Konrad Hsu Aschenbach, Ph.D., 2011 Directed By: Professor Romel D. Gomez, Department of Electrical and Computer Engineering We developed a carbon nanotube biosensor platform that was deployed at the National Cancer Institute and successfully detected the HER2 on...

متن کامل

A vertically aligned carbon nanotube-based impedance sensing biosensor for rapid and high sensitive detection of cancer cells.

A novel vertically aligned carbon nanotube based electrical cell impedance sensing biosensor (CNT-ECIS) was demonstrated for the first time as a more rapid, sensitive and specific device for the detection of cancer cells. This biosensor is based on the fast entrapment of cancer cells on vertically aligned carbon nanotube arrays and leads to mechanical and electrical interactions between CNT tip...

متن کامل

Carbon nanotube thin film transistors for biomedical applications

CARBON NANOTUBE THIN FILM TRANSISTORS FOR BIOMEDICAL APPLICATIONS Vanessa Velasco August 5, 2010 The application of carbon nanotubes (CNTs) has captivated the curiosity of today's experts due to the escalating potential in the field of electronic detection of biomolecules. Their extreme environmental sensitivity and small size make them ideal candidates for future biosensing technologies. Recen...

متن کامل

Evaluation of Stem Cell Markers, CD44/CD24 in Breast Cancer Cell Lines

Background Cancer stem cells play crucial roles in resistance to therapeutic schemes and relapse of disease, so it is important to find targeted therapies that kill them selectively. Breast cancer is the most common cancer in females living in all part of the world including Iran and it has an important burden in public health with direct impact on patients’ families. Breast cancer in young ad...

متن کامل

Nanotube-antibody biosensor arrays for the detection of circulating breast cancer cells.

Recent reports have shown that nanoscale electronic devices can be used to detect a change in electrical properties when receptor proteins bind to their corresponding antibodies functionalized on the surface of the device, in extracts from as few as ten lysed tumor cells. We hypothesized that nanotube-antibody devices could sensitively and specifically detect entire live cancer cells. We report...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009