Prion Protein Devoid of the Octapeptide Repeat Region Restores Susceptibility to Scrapie in PrP Knockout Mice

نویسندگان

  • Eckhard Flechsig
  • Doron Shmerling
  • Ivan Hegyi
  • Alex J Raeber
  • Marek Fischer
  • Antonio Cozzio
  • Christian von Mering
  • Adriano Aguzzi
  • Charles Weissmann
چکیده

Mice devoid of PrP are resistant to scrapie and fail to replicate the agent. Introduction of transgenes expressing PrP into such mice restores susceptibility to scrapie. We find that truncated PrP devoid of the five copper binding octarepeats still sustains scrapie infection; however, incubation times are longer and prion titers and protease-resistant PrP are about 30-fold lower than in wild-type mice. Surprisingly, brains of terminally ill animals show no histopathology typical for scrapie. However, in the spinal cord, infectivity, gliosis, and motor neuron loss are as in scrapie-infected wild-type controls. Thus, while the region comprising the octarepeats is not essential for mediating pathogenesis and prion replication, it modulates the extent of these events and of disease presentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological and Biochemical Characterization of Mice Expressing Prion Protein Devoid of the Octapeptide Repeat Region after Infection with Prions

Accumulating lines of evidence indicate that the N-terminal domain of prion protein (PrP) is involved in prion susceptibility in mice. In this study, to investigate the role of the octapeptide repeat (OR) region alone in the N-terminal domain for the susceptibility and pathogenesis of prion disease, we intracerebrally inoculated RML scrapie prions into tg(PrPΔOR)/Prnp(0/0) mice, which express m...

متن کامل

Genotyping of PRNP coding region for scrapie in Indian sheep

Prions are unprecedented infectious pathogens that cause a group of invariably fatal neurodegenerative disease by an entirely novel mechanism. The conformational change in prion proteins results in a change from a predominantly α-helical protein to a β-sheet form, which causes scrapie in sheep and goat. The present study was carried out to identify polymorphisms of the prion protein gene (PrP) ...

متن کامل

Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie.

The 'protein only' hypothesis postulates that the prion, the agent causing transmissible spongiform encephalopathies, is PrP(Sc), an isoform of the host protein PrP(C). Protease treatment of prion preparations cleaves off approximately 60 N-terminal residues of PrP(Sc) but does not abrogate infectivity. Disruption of the PrP gene in the mouse abolishes susceptibility to scrapie and prion replic...

متن کامل

Expression of Amino-Terminally Truncated PrP in the Mouse Leading to Ataxia and Specific Cerebellar Lesions

The physiological role of prion protein (PrP) remains unknown. Mice devoid of PrP develop normally but are resistant to scrapie; introduction of a PrP transgene restores susceptibility to the disease. To identify the regions of PrP necessary for this activity, we prepared PrP knockout mice expressing PrPs with amino-proximal deletions. Surprisingly, PrP lacking residues 32-121 or 32-134, but no...

متن کامل

PrP knock-out and PrP transgenic mice in prion research.

Spongiform encephalopathies such as scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle or Creutzfeldt-Jacob disease (CJD) and Gerstmann-Sträussler-Scheinker syndrome (GSS) in humans is caused by a transmissible agent designated prion. The 'protein only' hypothesis proposes that the prion consists partly or entirely of a conformational isoform of the normal host protein PrP(C), d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2000