Programmed chloroplast destruction during leaf senescence involves 13-lipoxygenase (13-LOX).
نویسندگان
چکیده
Leaf senescence is the terminal stage in the development of perennial plants. Massive physiological changes occur that lead to the shut down of photosynthesis and a cessation of growth. Leaf senescence involves the selective destruction of the chloroplast as the site of photosynthesis. Here, we show that 13-lipoxygenase (13-LOX) accomplishes a key role in the destruction of chloroplasts in senescing plants and propose a critical role of its NH2-terminal chloroplast transit peptide. The 13-LOX enzyme identified here accumulated in the plastid envelope and catalyzed the dioxygenation of unsaturated membrane fatty acids, leading to a selective destruction of the chloroplast and the release of stromal constituents. Because 13-LOX pathway products comprise compounds involved in insect deterrence and pathogen defense (volatile aldehydes and oxylipins), a mechanism of unmolested nitrogen and carbon relocation is suggested that occurs from leaves to seeds and roots during fall.
منابع مشابه
Characterization of a novel lipoxygenase-independent senescence mechanism in Alstroemeria peruviana floral tissue.
The role of lipoxygenase (lox) in senescence of Alstroemeria peruviana flowers was investigated using a combination of in vitro assays and chemical profiling of the lipid oxidation products generated. Phospholipids and galactolipids were extensively degraded during senescence in both sepals and petals and the ratio of saturated/unsaturated fatty acids increased. Lox protein levels and enzymatic...
متن کاملA Lipoxygenase Pathway Is Activated in Rice after Infection with the Rice Blast Fungus Magnaporthe grisea.
Lipoxygenase (LOX) and lipid hydroperoxide-decomposing activity (LHDA) markedly increased in the fifth leaves of rice (Oryza sativa cv Aichiasahi) after infection with the rice blast fungus, Magnaporthe grisea. The increases in the enzyme activities were significantly higher in response to infection with an incompatible strain (race 131) compared with infection with a compatible strain (race 00...
متن کاملInvolvement of lipoxygenase-dependent production of fatty acid hydroperoxides in the development of the hypersensitive cell death induced by cryptogein on tobacco leaves.
Lipid peroxidation was investigated in relation with the hypersensitive reaction in cryptogein-elicited tobacco leaves. A massive production of free polyunsaturated fatty acid (PUFA) hydroperoxides dependent on a 9-lipoxygenase (LOX) activity was characterized during the development of leaf necrosis. The process occurred after a lag phase of 12 h, was accompanied by the concomitant increase of ...
متن کاملDifferential distribution of the lipoxygenase pathway enzymes within potato chloroplasts.
The lipoxygenase pathway is responsible for the production of oxylipins, which are important compounds for plant defence responses. Jasmonic acid, the final product of the allene oxide synthase/allene oxide cyclase branch of the pathway, regulates wound-induced gene expression. In contrast, C6 aliphatic aldehydes produced via an alternative branch catalysed by hydroperoxide lyase, are themselve...
متن کاملA lipoxygenase with dual positional specificity is expressed in olives (Olea europaea L.) during ripening.
Plant lipoxygenases (LOXs) are a class of widespread dioxygenases catalysing the hydroperoxidation of polyunsaturated fatty acids. Although multiple isoforms of LOX have been detected in a wide range of plants, their physiological roles remain to be clarified. With the aim to clarify the occurrence of LOXs in olives and their contribution to the elaboration of the olive oil aroma, we cloned and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 12 شماره
صفحات -
تاریخ انتشار 2016