Laplace Transforms for Numericalinversion via Continued

نویسندگان

  • Joseph Abate
  • Ward Whitt
چکیده

It is often possible to e ectively calculate cumulative distribution functions and other quantities of interest by numerically inverting Laplace transforms. However, to do so it is necessary to compute the Laplace transform values. Unfortunately, convenient explicit expressions for required transforms are often unavailable. In that event, we show that it is sometimes possible to nd continued-fraction representations for required Laplace transforms that can serve as a basis for computing the transform values needed in the inversion algorithm. This property is very likely to prevail for completely monotone probability density functions, because their Laplace transforms have special continued fractions called S fractions, which have desirable convergence properties. We illustrate the approach by considering applications to compute rst-passage-time distributions in birth-and-death processes and various cumulative distribution functions with non-exponential tails, which can be used to model service-time distributions in queueing models. Subject classi cations: Probability distributions: calculation by transform inversion. Queues, algorithms: Laplace transform inversion. mathematics, functions: Laplace transforms and continued fractions. Other keywords: computational probability, numerical transform inversion, continued fractions, Laplace transforms, S fractions, complete monotonicity, Pad e approximants, cumulative distribution function, birth-and-death process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Laplace Transforms for Numerical Inversion Via Continued Fractions

It is often possible to effectively calculate probability density functions (pdf’s) and cumulative distribution functions (cdf’s ) by numerically inverting Laplace transforms. However, to do so it is necessary to compute the Laplace transform values. Unfortunately, convenient explicit expressions for required transforms are often unavailable for component pdf’s in a probability model. In that e...

متن کامل

Numerical pricing of discrete barrier and lookback options via Laplace transforms

URL: www.thejournalofcomputationalfinance.com Most contracts of barrier and lookback options specify discrete monitoring policies. However, unlike their continuous counterparts, discrete barrier and lookback options essentially have no analytical solution. For a broad class of models, including the classical Brownian model and jump-diffusion models, we show that the Laplace transforms of discre...

متن کامل

L2-transforms for boundary value problems

In this article, we will show the complex inversion formula for the inversion of the L2-transform and also some applications of the L2, and Post Widder transforms for solving singular integral equation with trigonometric kernel. Finally, we obtained analytic solution for a partial differential equation with non-constant coefficients.

متن کامل

Autoconvolution equations and generalized Mittag-Leffler ‎functions

This article is devoted to study of the autoconvolution equations and generalized Mittag-Leffler functions. These types of equations are given in terms of the Laplace transform convolution of a function with itself. We state new classes of the autoconvolution equations of the first kind and show that the generalized Mittag-Leffler functions are solutions of these types of equations. In view of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998