ENEE633 Project Report SVM Implementation for Face Recognition
نویسنده
چکیده
Support vector machine(SVM) is a very popular way to do pattern classification. This paper describes how to implement an support vector machine for face recognition with linear, polynomial and rbf kernel. It also implements principal component analysis and Fisher linear discriminant analysis for dimensionaly reduction before the classification. It implements svm classifier in MATLAB based on libsvm interface as well as scaler and parameter selector, which uses cross validation to find the optimal parameters for each kernel of classifiers. To apply svm on multiclass problem, it applies the one-against-one method due to its simplicity and good performance. It measures and compares different classifiers performance in terms of accuracy and gives the best parameters with the cross validation accuracy for each kernel under different scenarios including different selected training samples such as expressions and illuminations variations, and the amount of training data.
منابع مشابه
Face Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملUsing Eigenface Features to Drive Support Vector Machines in Face Recognition Systems
Face recognition is one of the growing fields of research which has deep rooted applications in authentication domains. Its success can be attributed to the various algorithms which have strived to make it work in the real time. The major factor underlying such systems is the proper feature extraction and effective classification. The paper aims at using the two most well-known techniques to ac...
متن کامل2D Dimensionality Reduction Methods without Loss
In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...
متن کامل