Latent Variable Interaction and Quadratic Effect Estimation: A Two-Step Technique Using Structural Equation Analysis

نویسنده

  • Robert A. Ping
چکیده

The author proposes an alternative estimation technique for latent variable interactions and quadraties. Available techniques for specifying these variables in structural equation models require adding variables or constraint equations that can produce specification tedium and errors or estimation difficulties. The proposed technique avoids these difficulties and may be useful for EQS, LISREL 7, and LISREL 8 users. First, measurement parameters for indicator Ioadings and errors of linear latent variables are estimated in a measurement model that excludes the interaction and quadratic variables. Next, these estimates are used to calculate values for the indicator loadings and error variances ofthe interaction and quadratic latent variables. Then, these calculated values are specified as constants in the structural model containing the interaction and quadratic variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل معادلات ساختاری و کاربرد آن در مطالعات روانشناسی: یک مطالعه مروری

Introduction: Structural Equation Modeling (SEM) is a very general statistical modeling technique, which is widely used in the behavioral sciences. It can be viewed as a combination of path analysis, regression and factor analysis.  One of the prominent features of this method is the ability to compute direct, indirect and total effects, as well as latent variable modeling. Methods: This sy...

متن کامل

BSEM Measurement Invariance Analysis

This paper concerns measurement invariance analysis for situations with many groups or time points. A BSEM (Bayesian Structural Equation Modeling) approach is proposed for detecting non-invariance that is similar to modification indices with maximum-likelihood estimation, but unlike maximum-likelihood is applicable also for high-dimensional latent variable models for categorical variables. Unde...

متن کامل

General Random Effect Latent Variable Modeling: Random Subjects, Items, Contexts, and Parameters

Bayesian methodology can be used to estimate cluster specific structural equation models with two-level data where all measurement and structural coefficients, including intercepts, factor loadings and regression coefficients can be estimated as cluster level random effects rather than fixed parameters. Bayesian methodology is also well-suited for estimating latent variable models where subject...

متن کامل

Using Structural Equation and Item Response Models to Assess Relationship between Latent Traits

We deepen the two main approaches to the problem of measurement error in social sciences, the Structural Equation Models (SEM) and the Item Response Theory Models (IRM), comparing two different estimation procedures. The One-step procedure (related to SEM) requires that researcher specifies a complete model of both measurement aspects (single link between the latent variable and its indicators)...

متن کامل

Estimation of nonlinear latent structural equation models using the extended unconstrained approach

123 Numerous theories within the social and behavioral sciences hypothesize interaction, quadratic effects, or both between multiple independent and dependent variables (Ajzen, 1987; Cronbach & Snow, 1977; Karasek, 1979; Lusch & Brown, 1996; Snyder & Tanke, 1976). For example, Ganzach (1997) studies the relationship between parents’ educational level and child’s educational expectations. He hyp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996