Robust Adaptive Beamforming Based on Steering Vector Estimation via Semidefinite Programming Relaxation

نویسندگان

  • Arash Khabbazibasmenj
  • Sergiy A. Vorobyov
  • Aboulnasr Hassanien
چکیده

We develop a new approach to robust adaptive beamforming in the presence of signal steering vector errors. Since the signal steering vector is known imprecisely, its presumed (prior) value is used to find a more accurate estimate of the actual steering vector, which then is used for obtaining the optimal beamforming weight vector. The objective for finding such an estimate of the actual signal steering vector is the maximization of the beamformer output power, while the constraints are the normalization condition and the requirement that the estimate of the steering vector does not converge to an interference steering vector. Our objective and constraints are free of any design parameters of non-unique choice. The resulting optimization problem is a non-convex quadratically constrained quadratic program, which is NP hard in general. However, for our problem we show that an efficient solution can be found using the semi-definite relaxation technique. Moreover, the strong duality holds for the proposed problem and can also be used for finding the optimal solution efficiently and at low complexity. In some special cases, the solution can be even found in closed-form. Our simulation results demonstrate the superiority of the proposed method over other previously developed robust adaptive beamforming methods for several frequently encountered types of signal steering vector errors. Index Terms Quadratically constrained quadratic programming (QCQP), robust adaptive beamforming, semi-definite programming (SDP) relaxation, steering vector estimation. This work is supported in parts by the Natural Science and Engineering Research Council (NSERC) of Canada and the Alberta Ingenuity Foundation, Alberta, Canada. The authors are with the Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St., Edmonton, Alberta, T6G 2V4 Canada. Emails: {khabazi, vorobyov, hassanie }@ece.ualberta.ca Corresponding author: Sergiy A. Vorobyov, Dept. Elect. and Comp. Eng., University of Alberta, 9107-116 St., Edmonton, Alberta, T6G 2V4, Canada; Phone: +1 780 492 9702, Fax: +1 780 492 1811. Email: [email protected]. August 6, 2010 DRAFT

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Robust Adaptive Beamformer Based on Semidefinite Programming with Quadratic Constraints

A robust beamforming with quadratic constraints, formulated as a semidefinite programming (SDP) problem, is proposed in this paper. With this formulation, the constraints on magnitude response can be easily imposed on the adaptive beamformer. And the non-convex quadratic constraints can be transformed into linear constraints. Therefore, the proposed method can be robust against the steering dir...

متن کامل

Study of Efficient Robust Adaptive Beamforming Algorithms Based on Shrinkage Techniques

This paper proposes low-complexity robust adaptive beamforming (RAB) techniques based on shrinkage methods. We firstly briefly review a Low-Complexity Shrinkage-Based Mismatch Estimation (LOCSME) batch algorithm to estimate the desired signal steering vector mismatch, in which the interference-plus-noise covariance (INC) matrix is also estimated with a recursive matrix shrinkage method. Then we...

متن کامل

Robust Widely Linear Beamforming via an IAA Method for the Augmented IPNCM Reconstruction

Based on the reconstruction of the augmented interferenceplus-noise (IPN) covariance matrix (CM) and the estimation of the desired signal’s extended steering vector (SV), we propose a novel robust widely linear (WL) beamforming algorithm. Firstly, an extension of the iterative adaptive approach (IAA) algorithm is employed to acquire the spatial spectrum. Secondly, the IAA spatial spectrum is ad...

متن کامل

Design of Robust Adaptive Beamforming Algorithms Based on Low-Rank and Cross-Correlation Techniques

This work presents cost-effective low-rank techniques for designing robust adaptive beamforming (RAB) algorithms. The proposed algorithms are based on the exploitation of the cross-correlation between the array observation data and the output of the beamformer. Firstly, we construct a general linear equation considered in large dimensions whose solution yields the steering vector mismatch. Then...

متن کامل

Robust Rank Reduction Algorithm with Iterative Parameter Optimization and Vector Perturbation

In dynamic propagation environments, beamforming algorithms may suffer from strong interference, steering vector mismatches, a low convergence speed and a high computational complexity. Reduced-rank signal processing techniques provide a way to address the problems mentioned above. This paper presents a low-complexity robust data-dependent dimensionality reduction based on an iterative optimiza...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1008.1047  شماره 

صفحات  -

تاریخ انتشار 2010