Nanoparticles as drug delivery agents specific for CNS: in vivo biodistribution.

نویسندگان

  • Anna Valeria Vergoni
  • Giovanni Tosi
  • Raffaella Tacchi
  • Maria Angela Vandelli
  • Alfio Bertolini
  • Luca Costantino
چکیده

UNLABELLED The pharmacological treatment of neurological disorders is often complicated by the inability of drugs to pass the blood-brain barrier. Recently we discovered that polymeric nanoparticles (NPs) made of poly(D,L-lactide-co-glycolide), surface-decorated with the peptide Gly-L-Phe-D-Thr-Gly-L-Phe-L-Leu-L-Ser(O-beta-D-glucose)-CONH2 are able to deliver, after intravenous administration, the model drug loperamide into the central nervous system (CNS). This new drug delivery agent is able to ensure a strong and long-lasting pharmacological effect, far greater than that previously observed with other nanoparticulate carriers. Here we confirmed the effectiveness of this carrier for brain targeting, comparing the effect obtained by the administration of loperamide-loaded NPs with the effect of an intracerebroventricular administration of the drug; moreover, the biodistribution of these NPs showed a localization into the CNS in a quantity about two orders of magnitude greater than that found with the other known NP drug carriers. Thus, a new kind of NPs that target the CNS with very high specificity was discovered. FROM THE CLINICAL EDITOR This paper discusses a nanoparticle-based technique of targeted drug delivery through the blood-brain barrier. The biodistribution of these novel nanoparticles showed two orders of magnitude greater efficiency compared to other known NP drug carriers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multifunctional MIL-S─CUR@FC nanoparticles: a targeted theranostic agent for magnetic resonance imaging and tumor targeted delivery of curcumin

Introduction: Noninvasive magnetic resonance imaging (MRI) and targeted drug delivery systems, usually referred to as theranostic agents, are being developed to enable detection, site-specific treatment, and long-term monitoring.   Materials and Methods: To elucidate the effects of coating on cellular uptake and biodistribution of n...

متن کامل

P107: Using Nano Particles as a Novel Application for Alzheimer’s Disease; an Effective Endeavor for Drug Delivery

As the most common cause of dementia among the elderly results in cognitive and ‎behavioral impairment, Alzheimer’s disease (AD) is characterized with aggregation of senile ‎plaques (Beta-amyloid protein), cortical atrophy and ventricular enlargement. Unfortunately, ‎conventional methods like acetyl cholinesterase inhibitor drugs, are not so effective owing to ‎restrictive...

متن کامل

Development and charecterization of PLGA - nanoparticles containing carvedilol

The objective of this study was to prepare PLGA nanoparticles of Carvedilol that will improve the bioavailability of Carvedilol and sustain the release to reduce the initial hypotensive peak and to prolong the antihypertensive effect of the drug. Carvedilol encapsulated by Nanoprecipitation method using PLGA and Pluronic F-68.Prepared nanoparticles were examined for physicochemical characterist...

متن کامل

Quantum chemical study of Interaction of PLGA polymeric nanoparticles as drug delivery with anti-cancer agents of thiazoline

Thiazoles derivatives are consisted in chemical compounds such as antimicrobial and anticancer medicine. Since polylactic-co-glycolic acid (PLGA) polymeric nanoparticles has been conversed about nanomedicine applications and particularly as drug delivery systems. Because of molecular self-assemblies and biodegradability of PLGA polymer, it can be used to carry anti-cancer and antimicrobial drug...

متن کامل

Pluronic as nano-carier for drug delivery systems

A common approach for building a drug delivery system is to incorporate the drug within the nanocarrier that results in increased solubility, metabolic stability, and improved circulation time. However, recent developments indicate that selection of polymer nanomaterials can implement more than only inert carrier functions by being biological response modifiers. One representative of such mater...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanomedicine : nanotechnology, biology, and medicine

دوره 5 4  شماره 

صفحات  -

تاریخ انتشار 2009